Sets and Relations (just needs checking please)

  • Thread starter Thread starter Natasha1
  • Start date Start date
  • Tags Tags
    Relations Sets
AI Thread Summary
The discussion revolves around the equivalence relation defined on the set of ordered pairs of natural numbers, where the relation is established by the condition a + d = b + c. The equivalence class of the pair (2,6) consists of all pairs (c,d) such that c - d = -4, which can be associated with the integer -4. The equivalence classes for integers 0, -1, and +1 are identified as (a,a), (a-1,a), and (a+1,a), respectively. Additionally, the definitions of addition and multiplication for ordered pairs demonstrate that (+1) + (-1) = 0 and (-1) x (-1) = (+1). The conversation confirms the correctness of these interpretations and their relationship to the integers derived from natural numbers.
Natasha1
Messages
494
Reaction score
9
MY WORK FOLLOWS BELOW THE QUESTIONS

Let AxB be the set of ordered pairs (a,b) where a and b belong to the set of natural numbers N.

A relation p: AxB ----> AxB is defined by: (a,b)p(c,d) <-----> a+d = b+c

As p is an equivalence relation there are associated equivalence classes.

(iv) Find all the ordered pairs in the equivalence class of (2,6). Why could this equivalence class be identified with the integer -4?

(v) Give the equivalence classes (as sets of ordered pairs) defined by p for each of the integers: 0, -1 and +1

(vi) Consider two general ordered pairs, (a,b) and (c,d). If addition is defined by (a,b) + (c,d) = (a+c, b+d) and multiplication is defined by (a,b) x (c,d) = (ac+bd, ad+bc), show that these definitions provide a way of demonstrating that (+1) + (-1) = 0 and (-1) x (-1) = (+1)

HERE IS MY WORK

(iv) The ordered pairs of the equivalence class (2,6) are infinite i.e. (4,8) or (6,10) so to find the general term let's write the condition as follows: a - b = c - d (so that the values of one pair appear on the left and the values of the other on the right). Here a - b = 2 - 6 = -4. Therefore any pair (c,d) with c-d = -4 (or d-c = 4) is also related.

(v) The set of ordered pairs are:

0 ----------> (a,a) where b=a

-1 ---------> (a-1, a) where b=a+1 or should I write like this instead (a, a+1)? Not sure let me know

+1 ---------> (a+1, a) where b=a-1 or should I write like this instead (a, a-1)? Not sure let me know

(vi) Let's consider 2 pairs say (2,3) and (6,7) which are as seen previously have an integer of -1 then if the multiplication of two orderd pairs is defined by (a,b) x (c,d) = (ac+bd, ad+bc) then

(2,3) x (6,7) = (12+21,14+18) = (33,32) which is has as seen in the previous question an integer of +1

Hence -1 x -1 = +1

Again, if we choose 1 pair say (33, 32) with an integer of +1 and the pair (5,6) with an integer value of -1 then the addition of two ordered pairs is defined by (a,b) + (c,d) = (a+c, b+d) and we get

(33,32) + (5,6) = (33+5, 32+6) = (38,38) which has an integer value of 0

Hence +1 + -1 = 0

Please correct any of my mistakes anyone... many thanks
 
Mathematics news on Phys.org
Yes, those are correct. That is, by the way, a standard way of defining the integers given the natural numbers.
If (a,b), with a> b, is in an equivalence class, then all members of the equivalence class, (x,y) have x-y= a- b and we associate that "integer" (equivalence class) with the natural number a-b.
If (a,b), with a< b, is in an equivalence class, then all members of teh equivalence class, (x,y) have y-x= b-a and we associate that "integer" with
-(b-a).
If an equivalence class contains (a,a), then all members of the equivalence class (x,y) have x= y and we associate that "integer" with 0.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top