- 24,753
- 794
==quote post #2 of this thread==
In 2009 Shaposhnikov and Wetterich predicted that Higgs would be observed at 126 GeV based on the assumption of asymptotic safe gravity and that standard model couplings were asymptotically free. Their prediction of Higgs mass came in the same box with one that nature had no new physics between here and the Planck scale.
This is a startling conclusion. In other words, once electroweak symmetrybreaking is taken care of, the good old standard model behaves like a fundamental theory (not merely effective) and holds all the way to Planck. As a signature prediction they derive along with that the 126 GeV figure for Higgs mass.
http://arxiv.org/pdf/0912.0208
Asymptotic safety of gravity and the Higgs boson mass
Mikhail Shaposhnikov and Christof Wetterich
...
...
Thanks to Mitchell for reminding us of this this. Hermann Nicolai gave a talk in 2009 where he talked about this same "big desert" idea and referred to work by Shaposhnikov. It's a striking idea to say the least.
==endquote==
==quote Shaposhnikov and Wetterich conclusions paragraph==
In conclusion, we discussed the possibility that the SM, supplemented by the asymptotically safe gravity plays the role of a fundamental, rather than effective field theory. We found that this may be the case if the gravity contributions to the running of the Yukawa and Higgs coupling have appropriate signs. The mass of the Higgs scalar is predicted mH = mmin ≃ 126 GeV with a few GeV uncertainty if all the couplings of the Standard Model, with the exception of the Higgs self-interaction λ , are asymptotically free, while λ is strongly attracted to an approximate fixed point λ = 0 (in the limit of vanishing Yukawa and gauge couplings) by the flow in the high energy regime. This can be achieved by a positive gravity induced anomalous dimension for the running of λ . A similar prediction remains valid for extensions of the SM as grand unified theories, provided the split between the unification and Planck-scales remains moderate and all relevant couplings are perturbatively small in the transition region. Detecting the Higgs scalar with mass around 126 GeV at the LHC could give a strong hint for the absence of new physics influencing the running of the SM couplings between the Fermi and Planck/unification scales.
==endquote==
In 2009 Shaposhnikov and Wetterich predicted that Higgs would be observed at 126 GeV based on the assumption of asymptotic safe gravity and that standard model couplings were asymptotically free. Their prediction of Higgs mass came in the same box with one that nature had no new physics between here and the Planck scale.
This is a startling conclusion. In other words, once electroweak symmetrybreaking is taken care of, the good old standard model behaves like a fundamental theory (not merely effective) and holds all the way to Planck. As a signature prediction they derive along with that the 126 GeV figure for Higgs mass.
http://arxiv.org/pdf/0912.0208
Asymptotic safety of gravity and the Higgs boson mass
Mikhail Shaposhnikov and Christof Wetterich
...
...
Thanks to Mitchell for reminding us of this this. Hermann Nicolai gave a talk in 2009 where he talked about this same "big desert" idea and referred to work by Shaposhnikov. It's a striking idea to say the least.
==endquote==
==quote Shaposhnikov and Wetterich conclusions paragraph==
In conclusion, we discussed the possibility that the SM, supplemented by the asymptotically safe gravity plays the role of a fundamental, rather than effective field theory. We found that this may be the case if the gravity contributions to the running of the Yukawa and Higgs coupling have appropriate signs. The mass of the Higgs scalar is predicted mH = mmin ≃ 126 GeV with a few GeV uncertainty if all the couplings of the Standard Model, with the exception of the Higgs self-interaction λ , are asymptotically free, while λ is strongly attracted to an approximate fixed point λ = 0 (in the limit of vanishing Yukawa and gauge couplings) by the flow in the high energy regime. This can be achieved by a positive gravity induced anomalous dimension for the running of λ . A similar prediction remains valid for extensions of the SM as grand unified theories, provided the split between the unification and Planck-scales remains moderate and all relevant couplings are perturbatively small in the transition region. Detecting the Higgs scalar with mass around 126 GeV at the LHC could give a strong hint for the absence of new physics influencing the running of the SM couplings between the Fermi and Planck/unification scales.
==endquote==