Shear force and bending moment

Click For Summary
SUMMARY

The discussion focuses on calculating the shear force diagram (SFD) and bending moment diagram (BMD) for a beam subjected to various loads. The participants verify calculations for the moment (M_a) and shear force (V_a), with the correct moment determined to be 93.3 kNm after correcting an initial error. The conversation also addresses the method for integrating shear force to obtain bending moment, emphasizing the importance of accurately representing distributed loads, particularly triangular and rectangular distributions.

PREREQUISITES
  • Understanding of shear force and bending moment concepts
  • Familiarity with beam loading conditions and types of loads
  • Knowledge of integration techniques for calculating moments from shear forces
  • Proficiency in using structural analysis tools, such as SkyCiv Beam Calculator
NEXT STEPS
  • Study the principles of shear force and bending moment diagrams
  • Learn how to apply integration techniques in structural analysis
  • Explore the use of online calculators for beam analysis, such as SkyCiv
  • Investigate different load distributions and their effects on bending moments
USEFUL FOR

Students in civil engineering, structural engineers, and anyone involved in analyzing beam structures and their load responses.

dss975599
Messages
31
Reaction score
1

Homework Statement


I was asked to find the shear force diagram and bending moment diagram for this load combination...But , i have problem of getting the BMD now . i am not sure which part is wrong , can anyone point out ?

Homework Equations

The Attempt at a Solution


MA = 5(2)(1/2)(2/3 x 2) + [ (10x4x4) - (10x4x0.5x(2+(2/3)(4)) ] +2(10)
, thus MA = 73.33kNm.
For , VA , i gt (5 x 2/2) + (10x4/2) + 2 = 27kN
I have sketched the SFD as attached , but i have problem of finding the area below the SFD to get moment , how to do this ?
 

Attachments

  • 993.JPG
    993.JPG
    8.3 KB · Views: 669
  • 994.png
    994.png
    36.2 KB · Views: 678
Physics news on Phys.org
I doubt that my MA = 5(2)(1/2)(2/3 x 2) + [ (10x4x4) - (10x4x0.5x(2+(2/3)(4)) ] +2(10)
, thus MA = 73.33kNm. is correct or not ?
Can someone help to check ?
 
I get

$$ M_a = 5*2 + \frac{5 \cdot 2}{2} \cdot \frac{2}{3}\cdot 2 + \frac{10 \cdot 4}{2} \cdot (2+ \frac{1}{3} \cdot 4) = 83.33$$

and

$$V_a = 27$$
 
Last edited:
  • Like
Likes   Reactions: dss975599
CivilSigma said:
I get

$$ M_a = 5*2 + \frac{5 \cdot 2}{2} \cdot \frac{2}{3}\cdot 2 + \frac{10 \cdot 4}{2} \cdot (2+ \frac{1}{3} \cdot 4) = 83.33$$

and

$$V_a = 27$$
why you ignore the moment caused by the 10kN force ?
 
There seems to be something wrong with the original figure. If you have a region of 5 kN/m it should be a rectangular region, not a triangle. Same for the 10 kN/m. Or is the 5 kN/m at the peak of the triangle, and the load distribution is non- uniform?
 
  • Like
Likes   Reactions: dss975599
dss975599 said:
why you ignore the moment caused by the 10kN force ?

If you mean the distributed 10 kN/m force, then I do not. It is the third value I am adding.

The total force of that triangular distribution is 10*4/2 , and the equivalent force will act at the centroid of the distribution, which is 1/3 * 4 from the left side of the triangle. Finally add 2m to find distance to the fixed support.

Chestermiller said:
There seems to be something wrong with the original figure. If you have a region of 5 kN/m it should be a rectangular region, not a triangle. Same for the 10 kN/m. Or is the 5 kN/m at the peak of the triangle, and the load distribution is non- uniform?
From my experience, the 5 kN/m force represents the peak of the triangle.
 
  • Like
Likes   Reactions: dss975599
CivilSigma said:
If you mean the distributed 10 kN/m force, then I do not. It is the third value I am adding.

The total force of that triangular distribution is 10*4/2 , and the equivalent force will act at the centroid of the distribution, which is 1/3 * 4 from the left side of the triangle. Finally add 2m to find distance to the fixed support.From my experience, the 5 kN/m force represents the peak of the triangle.
OK. Then I'll give the problem a shot so we can compare.
 
  • Like
Likes   Reactions: dss975599
CivilSigma said:
I get

$$ M_a = 5*2 + \frac{5 \cdot 2}{2} \cdot \frac{2}{3}\cdot 2 + \frac{10 \cdot 4}{2} \cdot (2+ \frac{1}{3} \cdot 4) = 83.33$$

and

$$V_a = 27$$
@dss975599 and @Chestermiller

I found a mistake in my calculation. The first term should be 10 * 2 , not 5*2 as in post #3. This will give a Ma= 93.3 kN*m.
I verified this using an online calculator.

https://skyciv.com/free-beam-calculator/
 
  • Like
Likes   Reactions: dss975599
CivilSigma said:
@dss975599 and @Chestermiller

I found a mistake in my calculation. The first term should be 10 * 2 , not 5*2 as in post #3. This will give a Ma= 93.3 kN*m.
I verified this using an online calculator.

https://skyciv.com/free-beam-calculator/
Thanks for your answer , i have obtained the SFD as in the online calculator , but i have no idea to get the area under the SFD to get the BMd. Do you know how to get the area under the SFD so that i can plot BMD based on SFD ?
 
  • #10
@Chestermiller @CivilSigma here's my working ... At x = 6m , i get M = -61kNm , but not -8kNm as provided by the online calculator , which part of my working is wrong ? for x = 0 and x = 2 , i gt the M value same as the online calculator
 

Attachments

  • 995.JPG
    995.JPG
    15.4 KB · Views: 604
  • 996.JPG
    996.JPG
    18.3 KB · Views: 609
  • #11
here's my trying ... Can anyone point out which part of my working is wrong ? I have been looking at this for the whole day
 

Attachments

  • DSC_1433.JPG
    DSC_1433.JPG
    34.3 KB · Views: 592
  • #12
I can't make out what you have written in the photo. But, first of all, for the direction of the moment you have drawn in your original figure, I get +93.33 kNm (in agreement with @CivilSigma) rather than your -93.33. For the shear force, I get the following:

##V=-1.25x^2+27## for (0<x<2)
##V=1.25x^2-15x+47## for (2<x<6)
I integrate to get the moment variation $$M=93.33-\int_0^x{V(x')dx'}$$
This gives me:
##M=93.33-27x+\frac{1.25x^3}{3}## for (0<x<2)
##M=110-47x+7.5x^2-\frac{1.25x^3}{3}## for (2<x<6)

This gives values for M of 42.67 kNm at x = 2 and 8 kNm at x = 6
 
  • Like
Likes   Reactions: dss975599
  • #13
Chestermiller said:
I can't make out what you have written in the photo. But, first of all, for the direction of the moment you have drawn in your original figure, I get +93.33 kNm (in agreement with @CivilSigma) rather than your -93.33. For the shear force, I get the following:

##V=-1.25x^2+27## for (0<x<2)
##V=1.25x^2-15x+47## for (2<x<6)
I integrate to get the moment variation $$M=93.33-\int_0^x{V(x')dx'}$$
This gives me:
##M=93.33-27x+\frac{1.25x^3}{3}## for (0<x<2)
##M=110-47x+7.5x^2-\frac{1.25x^3}{3}## for (2<x<6)

This gives values for M of 42.67 kNm at x = 2 and 8 kNm at x = 6
##V=1.25x^2-15x+47## for (2<x<6)## ,may i know how do you get this ?
 
  • #14
Chestermiller said:
I can't make out what you have written in the photo. But, first of all, for the direction of the moment you have drawn in your original figure, I get +93.33 kNm (in agreement with @CivilSigma) rather than your -93.33. For the shear force, I get the following:

##V=-1.25x^2+27## for (0<x<2)
##V=1.25x^2-15x+47## for (2<x<6)
I integrate to get the moment variation $$M=93.33-\int_0^x{V(x')dx'}$$
This gives me:
##M=93.33-27x+\frac{1.25x^3}{3}## for (0<x<2)
##M=110-47x+7.5x^2-\frac{1.25x^3}{3}## for (2<x<6)

This gives values for M of 42.67 kNm at x = 2 and 8 kNm at x = 6
and how do you get ##M=110-47x+7.5x^2-\frac{1.25x^3}{3}## for (2<x<6) ? By integrating ##V=1.25x^2-15x+47## for (2<x<6) , i gt ##M=0.42x^3-7.5x^2+47x## for (2<x<6)...
 
  • #15
For the distributed loading, I got

##w=2.5x## for (0<x<2)
##w=2.5(6-x)=15-2.5x## for (2<x<6)

For the shear force, I integrated $$\frac{dV}{dx}=-w(x)$$subject to the initial condition V(0)=27

For the moment, I integrated $$\frac{dM}{dx}=-V (x)$$ subject to the initial condition M(0)=93.33
 
  • Like
Likes   Reactions: dss975599 and CivilSigma
  • #16
Chestermiller said:
For the distributed loading, I got

##w=2.5x## for (0<x<2)
##w=2.5(6-x)=15-2.5x## for (2<x<6)

For the shear force, I integrated $$\frac{dV}{dx}=-w(x)$$subject to the initial condition V(0)=27

For the moment, I integrated $$\frac{dM}{dx}=-V (x)$$ subject to the initial condition M(0)=93.33
how do you get 2.5(6-x) ? I don't understand
 
  • #17
dss975599 said:
how do you get 2.5(6-x) ? I don't understand
What is the equation for the straight line passing through the points (2,10) and (6,0)?
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
3K