The problem is that I don't have enough time to take everything, with the pure math major I can either do a load of combinatorics classes (graph theory and enumeration) which look interesting, or a few courses in the applied math department:
Calculus 4
Vector integral calculus-line integrals, surface integrals and vector fields, Green's theorem, the Divergence theorem, and Stokes' theorem. Applications include conservation laws, fluid flow and electromagnetic fields. An introduction to Fourier analysis. Fourier series and the Fourier transform. Parseval's formula. Frequency analysis of signals. Discrete and continuous spectra. [Offered: F,W,S]
Introduction to Differential Equations
Physical systems which lead to differential equations (examples include mechanical vibrations, population dynamics, and mixing processes). Dimensional analysis and dimensionless variables. Solving linear differential equations: first- and second-order scalar equations and first -order vector equations. Laplace transform methods of solving differential equations. [Offered: F,W,S]
Ordinary Differential Equations 2
Second order linear differential equations with non-constant coefficients, Sturm comparison, oscillation and separation theorems, series solutions and special functions. Linear vector differential equations in Rn, an introduction to dynamical systems. Laplace transforms applied to linear vector differential equations, transfer functions, the convolution theorem. Perturbation methods for differential equations. Numerical methods for differential equations. Applications are discussed throughout. [Offered: F,S]
Partial Differential Equations 1
Second order linear partial differential equations - the diffusion equation, wave equation, and Laplace's equation. Methods of solution - separation of variables and eigenfunction expansions, the Fourier transform. Physical interpretation of solutions in terms of diffusion, waves and steady states. First order non-linear partial differential equations and the method of characteristics. Applications are emphasized throughout. [Offered: W,S]
Partial Differential Equations 2
A thorough discussion of the class of second-order linear partial differential equations with constant coefficients, in two independent variables. Laplace's equation, the wave equation and the heat equation in higher dimensions. Theoretical/qualitative aspects: well-posed problems, maximum principles for elliptic and parabolic equations, continuous dependence results, uniqueness results (including consideration of unbounded domains), domain of dependence for hyperbolic equations. Solution procedures: elliptic equations -- Green functions, conformal mapping; hyperbolic equations -- generalized d'Alembert solution, spherical means, method of descent; transform methods -- Fourier, multiple Fourier, Laplace, Hankel (for all three types of partial differential equations); Duhamel's method for inhomogeneous hyperbolic and parabolic equations.