Show Convergence of Sequence of Continuous Functions to an F-sigma Delta Set

  • Thread starter Thread starter steven2006
  • Start date Start date
  • Tags Tags
    Delta Set
steven2006
Messages
3
Reaction score
0
Let \{f_n\} be a sequence of continuous functions defined on \mathbb{R}. Show that the set of points where this sequence converges is an \mathcal{F_{\sigma\delta}}.

Any help is appreciated.
 
Physics news on Phys.org
What are your initial thoughts on how to solve this? You need to show some work in order for us to help you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top