Show that a wave function is correctly normalised?

Dream_Theater
Messages
3
Reaction score
0
Hi, could someone please tell me how I would show that a wave function is correctly normalised?

I know to integrate the square of the function between infinity and negative infinity, but is the complex conjugate required?

Any help is much appreciated :D
 
Physics news on Phys.org
You integrate the absolute square of the wave function, which is the wave function times its complex conjugate.
 
Thanks, that helps a lot. I can see where I was going wrong.

Also, for a wavefunction, can the expectation value of the position be equal to zero?
 
It means that the particle is equally likely to be found on one side of the origin of your coordinate system, as on the opposite side. Whether that's possible or not depends on the situation. For a hydrogen atom in the ground state, with the proton at the origin, <x> for the electron is in fact zero. For the classic textbook particle in an "infinite square well" whose boundaries are at x = 0 and x = L, <x>= 0 is not possible.
 
Thanks, that really helps. I was wondering because I was looking at a question that didn't really specify the conditions. I'll check through my working and see if I've made any mistakes. Also, if <x> is zero, can <p> also be zero?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
5
Views
2K
Replies
4
Views
2K
Replies
5
Views
2K
Replies
14
Views
4K
Replies
1
Views
2K
Replies
24
Views
3K
Back
Top