MHB Show that in every set p2 with more than three vectors is linearly dependent.

delgeezee
Messages
12
Reaction score
0
i know S = { $$1 , x, x^2$$} is linearly dependent set for p2. where $$(a_0, a_1, a_2) = (0,0,0) $$
I wanted to use the Wronskian on { $$1 , x, x^2, x^3$$} , but as I understand, it only proves linear independence and not the converse.
 
Physics news on Phys.org
delgeezee said:
i know S = { $$1 , x, x^2$$} is linearly dependent set for p2. where $$(a_0, a_1, a_2) = (0,0,0) $$
I wanted to use the Wronskian on { $$1 , x, x^2, x^3$$} , but as I understand, it only proves linear independence and not the converse.

Hi delgeezee!

Can you elaborate?
For starters, what do you mean by p2?
And how do your $a_i$ tie in?
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...