MHB Show that the area of the rectangle is....

  • Thread starter Thread starter mathlearn
  • Start date Start date
  • Tags Tags
    Area Rectangle
Click For Summary
The discussion centers on calculating the area of a rectangle with length x+1 and breadth x, where x is defined as -1±√11. Participants clarify that only the positive root, x=√11-1, is valid since dimensions cannot be negative. The area is ultimately expressed as (√11)(√11) - (√11), simplifying to 11 - √11. There is confusion regarding the multiplication of the area expression by -1, which is addressed in the conversation. The final area calculation is confirmed as correct, emphasizing the importance of using the appropriate value for x.
mathlearn
Messages
331
Reaction score
0
There's a rectangle which the length is x+1 and the breadth is x.

X is $$-1\pm\sqrt{11}$$

Show that the area is $$11-\sqrt{11}$$

The workings I have done for far are below.

$$(-1\pm \sqrt{11})*(-1 \pm \sqrt{11} +1) $$

$$(-1\pm \sqrt{11})*( \pm \sqrt{11} ) $$

$$(-1\pm \sqrt{11})*( \pm \sqrt{11} ) $$

$$(-1\pm \sqrt{11})*( \pm \sqrt{11} ) $$

Where have I done wrong ? And the square root of the solution of the area you are asked to show is a negative. A comment here would be appreciated.

Many thanks :)
 
Mathematics news on Phys.org
Measures cannot be negative, so we must have:

$$x=\sqrt{11}-1$$

And so:

$$x+1=\sqrt{11}$$

So, what is the area?
 
MarkFL said:
Measures cannot be negative, so we must have:

$$x=\sqrt{11}-1$$

And so:

$$x+1=\sqrt{11}$$

So, what is the area?

$$(-1+ \sqrt{11})*( + \sqrt{11} ) $$

$$ - \sqrt{11}+ 11 $$

Correct? :)
 
Why would you multiply the expression representing the area by -1?

edit: I see you edited your post. :D
 
MarkFL said:
Why would you multiply the expression representing the area by -1?

edit: I see you edited your post. :D

(Party)(Party)(Happy) Thank you very much MarkFL
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K