Show this silly function is Riemann-integrable and find the integral

  • Thread starter Thread starter quasar987
  • Start date Start date
  • Tags Tags
    Function Integral
quasar987
Science Advisor
Homework Helper
Gold Member
Messages
4,796
Reaction score
32

Homework Statement


See the title. The silly function in question is f:[0,1]-->R with f(x)=0 if x is irrational, and f(x)=1/q if x is rational and of the form x=p/q where p and q have no common factor.

Homework Equations


The Attempt at a Solution



I'm like 100% sure that I must show it is integrable by showing that the set of discontinuities is of measure zero and the natural assumption is that this set of discontinuities is the rationals in [0,1], but how do I show that?

I feel there is something I am missing about the p/q representation thing. If f is continuous on the irrational, then it must be that given an e>0 and an irrational y, there is a little disk around it y such that all rationals in that disk have 1/q<e. How come?
 
Physics news on Phys.org
How many rationals are there in an interval?
 
Ok, if y is irrational and you are given e>0, let Q be an integer such that Q>1/e. Now let S be the set of rationals {p/q} where q<=Q. S is a finite set. So let the radius of the disk be delta=inf(|y-S|)>0.
 
That is ingenious!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top