Showcasing Limits: Proving $\lim_{x\rightarrow2}\frac{1}{x^2}=\frac{1}{4}$

  • Thread starter Thread starter H2Pendragon
  • Start date Start date
  • Tags Tags
    Limits
H2Pendragon
Messages
17
Reaction score
0

Homework Statement


Use the definition of limits to show that
lim _{x\rightarrow 2} \frac{1}{x^{2}} = \frac{1}{4}


Homework Equations


\forall \epsilon > 0, \exists \delta > 0, x \in D, 0 < |x-2| < \delta \Rightarrow |\frac{1}{x^{2}} - \frac{1}{4}| < \epsilon


The Attempt at a Solution



|\frac{1}{x^{2}} - \frac{1}{4}| < \epsilon \Rightarrow |\frac{4-x^{2}}{4x^{2}}| < \epsilon \Rightarrow \frac{|4-x^{2}|}{4x^{2}} < \epsilon

Restrict: 1 < x < 3 \Rightarrow 4<4x^{2}<36 \Rightarrow \frac{1}{36} < \frac{1}{4x^{2}} < \frac{1}{4} \Rightarrow \frac{|4-x^{2}|}{36} < \frac{|4-x^{2}|}{4x^{2}} < \frac{|4-x^{2}|}{4} < \epsilon

And now I'm stuck. I'm trying to find delta based on epsilon. Normally the problems come to a neat little solution, but |4-x2| is not |x-2| and trying to get it to equal |x-2| is where I'm having the trouble.

Any help is appreciated.
 
Physics news on Phys.org
|4-x^2|=|x^2-4|=|(x-2)(x+2)|=____?
 
gabbagabbahey said:
|4-x^2|=|x^2-4|=|(x-2)(x+2)|=____?

Yeah I got that far. I know that
|(x-2)||(x+2)| < 4\epsilon

But that still leaves that (x+2) there (which I can remove the absolute value from since it has to be positive). I can't have delta dependent on x.

I'm probably missing something blatant and obvious right here.
 
Last edited:
Well, you've restricted your domain to between 1 and 3, so... __?__\leq|x+2|\leq__?__ ...then simply choose epsilon to be greater than the upper bound of \frac{|x-2||x+2|}{4}
 
gabbagabbahey said:
Well, you've restricted your domain to between 1 and 3, so... __?__\leq|x+2|\leq__?__ ...then simply choose epsilon to be greater than the upper bound of \frac{|x-2||x+2|}{4}

ah, duh, thanks. 3 < |x+2| < 5 (since x+2 is positive with or without the absolute value)

So then

\frac{|x-2||x+2|}{4} \leq \frac{5*|x-2|}{4} &lt; \epsilon

Thus |x-2| &lt; \frac{4}{5}\epsilon

Thus if \delta = \frac{4}{5}\epsilon \Rightarrow |f(x) - \frac{1}{4}| &lt; \epsilonThanks so much.
 
1<x<3
implies
3<x+2<5
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top