Showing that a momentum space wave function is normalized

Rubber Ducky
Messages
14
Reaction score
0

Homework Statement



Using the following expression for the Dirac delta function: $$\delta(k-k')=\frac{1}{2\pi} \int_{-\infty}^{\infty}e^{i(k-k')x} \mathrm{d}x$$

Show that if a position space wave function $$\Psi(x,t)$$ is normalized at time t=0, then it is also true that the corresponding momentum space $$\Phi(p_x,t)$$ is normalized at t=0.

Homework Equations



$$\Phi(p_x,0)=\frac{1}{\sqrt{2\pi \hbar}} \int_{-\infty}^{\infty} e^{-i\frac{p_xx}{\hbar}}\Psi(x,0)\mathrm{d}x$$

From which it follows that $$\Phi^*(p_x,0)=\frac{1}{\sqrt{2\pi \hbar}} \int_{-\infty}^{\infty} e^{i\frac{p_xx}{\hbar}}\Psi^*(x,0)\mathrm{d}x$$

The Attempt at a Solution



We need to show that $$\int_{-\infty}^{\infty} \Phi(p_x,0)\Phi^*(p_x,0)\mathrm{d}p_x=1$$

To get started, we look at the modulus squared of the momentum space wave function, which can be written as a double integral instead of a product of integrals: $$\Phi^*(p_x,0)\Phi(p_x,0)=\frac{1}{2\pi \hbar} \left( \int_{-\infty}^{\infty} e^{i\frac{p_xx}{\hbar}}\Psi^*(x,0)\mathrm{d}x \right)\left( \int_{-\infty}^{\infty} e^{-i\frac{p_xx}{\hbar}}\Psi(x,0)\mathrm{d}x \right)=\frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\frac{p_xy}{\hbar}-\frac{p_xx}{\hbar})}\Psi(x,0)\Psi^*(y,0)\mathrm{d}y \mathrm{d}x$$

From here, I'm pretty sure I'm meant to manipulate the double integral until it looks like I'm integrating a delta function, using the form of the Dirac delta given to me, to simplify, and then simplify further using the fact that the position wave function is normalized. I just can't see how to manipulate the integrand to get that far.
 
Physics news on Phys.org
Rubber Ducky said:
To get started, we look at the modulus squared of the momentum space wave function, which can be written as a double integral instead of a product of integrals: $$\Phi^*(p_x,0)\Phi(p_x,0)=\frac{1}{2\pi \hbar} \left( \int_{-\infty}^{\infty} e^{i\frac{p_xx}{\hbar}}\Psi^*(x,0)\mathrm{d}x \right)\left( \int_{-\infty}^{\infty} e^{-i\frac{p_xx}{\hbar}}\Psi(x,0)\mathrm{d}x \right)=\frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\frac{p_xy}{\hbar}-\frac{p_xx}{\hbar})}\Psi(x,0)\Psi^*(y,0)\mathrm{d}y \mathrm{d}x$$
OK. This looks good to me.

From here, I'm pretty sure I'm meant to manipulate the double integral until it looks like I'm integrating a delta function, using the form of the Dirac delta given to me, to simplify, ...
You won't be able to do that. Try using your result to set up ##\int_{-\infty}^{\infty} \Phi(p_x,0)\Phi^*(p_x,0)\mathrm{d}p_x## and then see if you can manipulate to get the Dirac delta function.
 
Integrate the last expression w.r.t. to ##p_x## and use the Dirac function definition.
 
Thank you both for the suggestion. So I have ##\Phi^*(p_x,0)\Phi(p_x,0)=\frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\frac{p_xy}{\hbar}-\frac{p_xx}{\hbar})}\Psi(x,0)\Psi^*(y,0)\mathrm{d}y \mathrm{d}x##, and so ##\int_{-\infty}^{\infty} \Phi^*(p_x,0)\Phi(p_x,0)\mathrm{d}p_x=\frac{1}{\hbar}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\Psi(x,0)\Psi^*(y,0) \left( \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i(\frac{y}{\hbar}-\frac{x}{\hbar})p_x} \mathrm{d}p_x\right)\mathrm{d}y\mathrm{d}x##
##=\frac{1}{\hbar}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\Psi(x,0)\Psi^*(y,0) \delta(\frac{y}{\hbar}-\frac{x}{\hbar})\mathrm{d}y\mathrm{d}x##

With the change of variables ##y'=\frac{y}{\hbar},x'=\frac{x}{\hbar}##, we get ##\hbar\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\Psi(x'\hbar,0)\Psi^*(y'\hbar,0) \delta(y'-x')\mathrm{d}y'\mathrm{d}x'=\hbar\int_{-\infty}^{\infty}\Psi(x'\hbar,0)\Psi^*(x'\hbar,0) \mathrm{d}x'=\int_{-\infty}^{\infty}\Psi(x,0)\Psi^*(x,0) \mathrm{d}x=1##

And so ##\Phi## is normalized at time ##t=0##. I'm unsure if I used the property of the delta function correctly, however, since the argument of ##\Psi^*## was ##y'\hbar## and not simply ##y'##...
 
Rubber Ducky said:
And so ##\Phi## is normalized at time ##t=0##. I'm unsure if I used the property of the delta function correctly, however, since the argument of ##\Psi^*## was ##y'\hbar## and not simply ##y'##...
Your work looks good to me. You could have made the change of variable back in the px integral by letting k = px/ħ.
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top