Showing that a momentum space wave function is normalized

Rubber Ducky
Messages
14
Reaction score
0

Homework Statement



Using the following expression for the Dirac delta function: $$\delta(k-k')=\frac{1}{2\pi} \int_{-\infty}^{\infty}e^{i(k-k')x} \mathrm{d}x$$

Show that if a position space wave function $$\Psi(x,t)$$ is normalized at time t=0, then it is also true that the corresponding momentum space $$\Phi(p_x,t)$$ is normalized at t=0.

Homework Equations



$$\Phi(p_x,0)=\frac{1}{\sqrt{2\pi \hbar}} \int_{-\infty}^{\infty} e^{-i\frac{p_xx}{\hbar}}\Psi(x,0)\mathrm{d}x$$

From which it follows that $$\Phi^*(p_x,0)=\frac{1}{\sqrt{2\pi \hbar}} \int_{-\infty}^{\infty} e^{i\frac{p_xx}{\hbar}}\Psi^*(x,0)\mathrm{d}x$$

The Attempt at a Solution



We need to show that $$\int_{-\infty}^{\infty} \Phi(p_x,0)\Phi^*(p_x,0)\mathrm{d}p_x=1$$

To get started, we look at the modulus squared of the momentum space wave function, which can be written as a double integral instead of a product of integrals: $$\Phi^*(p_x,0)\Phi(p_x,0)=\frac{1}{2\pi \hbar} \left( \int_{-\infty}^{\infty} e^{i\frac{p_xx}{\hbar}}\Psi^*(x,0)\mathrm{d}x \right)\left( \int_{-\infty}^{\infty} e^{-i\frac{p_xx}{\hbar}}\Psi(x,0)\mathrm{d}x \right)=\frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\frac{p_xy}{\hbar}-\frac{p_xx}{\hbar})}\Psi(x,0)\Psi^*(y,0)\mathrm{d}y \mathrm{d}x$$

From here, I'm pretty sure I'm meant to manipulate the double integral until it looks like I'm integrating a delta function, using the form of the Dirac delta given to me, to simplify, and then simplify further using the fact that the position wave function is normalized. I just can't see how to manipulate the integrand to get that far.
 
Physics news on Phys.org
Rubber Ducky said:
To get started, we look at the modulus squared of the momentum space wave function, which can be written as a double integral instead of a product of integrals: $$\Phi^*(p_x,0)\Phi(p_x,0)=\frac{1}{2\pi \hbar} \left( \int_{-\infty}^{\infty} e^{i\frac{p_xx}{\hbar}}\Psi^*(x,0)\mathrm{d}x \right)\left( \int_{-\infty}^{\infty} e^{-i\frac{p_xx}{\hbar}}\Psi(x,0)\mathrm{d}x \right)=\frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\frac{p_xy}{\hbar}-\frac{p_xx}{\hbar})}\Psi(x,0)\Psi^*(y,0)\mathrm{d}y \mathrm{d}x$$
OK. This looks good to me.

From here, I'm pretty sure I'm meant to manipulate the double integral until it looks like I'm integrating a delta function, using the form of the Dirac delta given to me, to simplify, ...
You won't be able to do that. Try using your result to set up ##\int_{-\infty}^{\infty} \Phi(p_x,0)\Phi^*(p_x,0)\mathrm{d}p_x## and then see if you can manipulate to get the Dirac delta function.
 
Integrate the last expression w.r.t. to ##p_x## and use the Dirac function definition.
 
Thank you both for the suggestion. So I have ##\Phi^*(p_x,0)\Phi(p_x,0)=\frac{1}{2\pi \hbar} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(\frac{p_xy}{\hbar}-\frac{p_xx}{\hbar})}\Psi(x,0)\Psi^*(y,0)\mathrm{d}y \mathrm{d}x##, and so ##\int_{-\infty}^{\infty} \Phi^*(p_x,0)\Phi(p_x,0)\mathrm{d}p_x=\frac{1}{\hbar}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\Psi(x,0)\Psi^*(y,0) \left( \frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i(\frac{y}{\hbar}-\frac{x}{\hbar})p_x} \mathrm{d}p_x\right)\mathrm{d}y\mathrm{d}x##
##=\frac{1}{\hbar}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\Psi(x,0)\Psi^*(y,0) \delta(\frac{y}{\hbar}-\frac{x}{\hbar})\mathrm{d}y\mathrm{d}x##

With the change of variables ##y'=\frac{y}{\hbar},x'=\frac{x}{\hbar}##, we get ##\hbar\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\Psi(x'\hbar,0)\Psi^*(y'\hbar,0) \delta(y'-x')\mathrm{d}y'\mathrm{d}x'=\hbar\int_{-\infty}^{\infty}\Psi(x'\hbar,0)\Psi^*(x'\hbar,0) \mathrm{d}x'=\int_{-\infty}^{\infty}\Psi(x,0)\Psi^*(x,0) \mathrm{d}x=1##

And so ##\Phi## is normalized at time ##t=0##. I'm unsure if I used the property of the delta function correctly, however, since the argument of ##\Psi^*## was ##y'\hbar## and not simply ##y'##...
 
Rubber Ducky said:
And so ##\Phi## is normalized at time ##t=0##. I'm unsure if I used the property of the delta function correctly, however, since the argument of ##\Psi^*## was ##y'\hbar## and not simply ##y'##...
Your work looks good to me. You could have made the change of variable back in the px integral by letting k = px/ħ.
 
Last edited:
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top