How to Derive the Expression for \(\delta W = -E dP\)?

  • Thread starter Thread starter appmathstudent
  • Start date Start date
appmathstudent
Messages
6
Reaction score
2
Homework Statement
This is exercise 3-12 form Sears and Salinger Thermodynamics : Show that $$\delta W = -E dP$$ by calculating the work necessary to charge a parallel plate capacitor containing a dielectric.
Relevant Equations
$$W = U = \frac{q^2}{2C}$$
$$ C = \frac{\kappa \epsilon_0 A}{d}$$
$$P = qd $$ (dipole moment of slab)
$$ E = \frac{q}{\epsilon_0 \kappa A}$$
$$W = U = \frac{q^2}{2C} =\frac{q q d}{2 \kappa \epsilon_0 A} = \frac{E P}{2}$$

Then , since E is constant we have that :

$$\delta W = \frac{dW}{dP} dP = \frac{E}{2} dP$$.

My question is how can I make this 2 on the denominator disappear in order to obtain the required expression ?

ps : In the book (Chapter 3 page 67) he mentions that $$\delta W$$ is the work when $$E$$ is changed in a dielectric slab.
 
Last edited:
Physics news on Phys.org
dP=d(qD)=(dq) D+ q (dD)
where D is distance between the capacitor plates introduced to distinguish it with differential d.
Which is your case changing charge or changing distance or the both ?
 
Last edited:
I think q is changing, since the work is done to change E.
 

Attachments

  • 20211002_125815.jpg
    20211002_125815.jpg
    30 KB · Views: 164
appmathstudent said:
I think q is changing, since the work is done to change E.
So you are saying E is not constant during the charging process.
 
appmathstudent said:
I think q is changing, since the work is done to change E.
q is changing, d is constant so
dP=d(dq)
\frac{dW}{dP}=\frac{1}{d}\frac{dW}{dq}
Try it.
 
  • Like
Likes appmathstudent
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top