Signals sent during relativistic space travel

AI Thread Summary
Amelia's journey to a planet 12 light-years away at 0.6c results in a contracted distance of 9.6 light-years, taking her 32 years in total. During her trip, Earth receives signals at a rate affected by the relativistic Doppler effect, receiving 0.5 signals per year on the way there and 2 signals per year on the return. The initial calculation suggested 40 signals, but this was incorrect due to not properly accounting for time dilation. The correct total, considering time dilation, is 32 signals, as she sends one signal each year during her 32-year journey. The discussion highlights the complexities of relativistic effects on time and signal reception.
Oijl
Messages
102
Reaction score
0

Homework Statement


Suppose rocket traveler Amelia has a clock made on Earth. She flies to and back from a planet 12 light-years away (as measured from rest with respect to Earth) from Earth at a speed of 0.6c. Every year she sends a signal to Earth. How many signals does Earth receive by the time she gets back?


Homework Equations


f = f'*[sqrt((1-u/c)/(1+u/c))]
(relativistic Doppler shift)
L = Lo*sqrt(1-u^2/c^2)
(relativistic length contraction)

The Attempt at a Solution


The distance to the planet for Amelia is shorter than 12 light-years. It is 9.6 light-years. So she takes 16 years (as she measures them) to get there and 16 to get back.

On the way there, by the relativistic Doppler equation I know that Earth receives her signals at a rate of 0.5 signals every Amelia-year, and on her way back Earth receives her signals at a rate of 2 signals every Amelia-year.

There are 16 Amelia-years in the trip to the planet, and 16 in the trip from the planet. So the total number of signals is

16*0.5 + 16*2 = 8 + 32 = 40.

But that is wrong, because it should be 32 signals, if she sent one every year, since her trip lasted 32 years to her.

How am I doing this wrong?
(Thanks.)
 
Physics news on Phys.org
You calculated the distance in Amelia's frame of reference but did not account for the slowing of time in her frame.
 
Ta-Da! Thank you, Halls of Ivy, that was kind of you. That's a load off my mind.
 
I'm dabbling over the same question but how would that time dilation effect be? Would it be affecting the 32 years time? or, since the Earth has a relativistic speed of 0.6c relative to Amelia, should we consider the effect on Earth's time?

Thanks
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top