epimorphic
- 3
- 0
I have a rather silly limit question.
Consider
\begin{equation}
\lim_{x \rightarrow \infty} f(x)
\end{equation}
and assume it exists. Suppose now that
\begin{equation}
x = a\, t + b\, g(t),
\end{equation}
where a and b are constants and g(t) is a periodic function of t. Now, is it correct to simply replace \lim_{x \rightarrow \infty} by \lim_{t \rightarrow \infty} as x \rightarrow \infty if and only if t \rightarrow \infty? That is, is it correct to write
\begin{equation}
\lim_{x \rightarrow \infty} f(x) = \lim_{t \rightarrow \infty} f(x(t))\;?
\end{equation}
Consider
\begin{equation}
\lim_{x \rightarrow \infty} f(x)
\end{equation}
and assume it exists. Suppose now that
\begin{equation}
x = a\, t + b\, g(t),
\end{equation}
where a and b are constants and g(t) is a periodic function of t. Now, is it correct to simply replace \lim_{x \rightarrow \infty} by \lim_{t \rightarrow \infty} as x \rightarrow \infty if and only if t \rightarrow \infty? That is, is it correct to write
\begin{equation}
\lim_{x \rightarrow \infty} f(x) = \lim_{t \rightarrow \infty} f(x(t))\;?
\end{equation}