Simple Convergence: Does \sum\sin(x^n) Converge?

  • Thread starter Thread starter bomba923
  • Start date Start date
  • Tags Tags
    Convergence
bomba923
Messages
759
Reaction score
0
Just out of curiosity, does
\sum\limits_{n = 1}^\infty {\sin \left( {x^n } \right)}
converge \forall x \in \left( -1 , 1 \right) ?
 
Last edited:
Physics news on Phys.org
I would be tempted to say yes, because of the inequality |sin(x)|<|x|, which implies |sin(x^n)|<|x^n|, which implies

\sum^m|\sin(x^n)|\leq \sum^m|x^n|

But for -1<x<1, the sum on the right is geometric, which converges. So the sine series converges absolutely.
 
can you please tell me how i can prove that |sin(x)| < |x|?
 
Strictly speaking, it's not true- sin(x)= x when x= 0!

At x=0 sin(0)= 0. Let f(x)= x- sin(x). Then f'(x)= 1- cos(x) which is always greater than or equal to 0. That is, x- sin(x) is an increasing function. For any x> 0 x> sin(x). For x< 0 use the fact that both x and sin(x) are odd functions: if x is negative, then -x is positive and so -x> sin(-x)= -sin(x). But x is negative and (for 0&gt; x&gt; -\pi) so is sin(x). |sin(x)|= -x> |sin(x)|= -sin(x). For |x|> 1, it is obvious that |x|> |sin(x)|.
 
quasar987 said:
I would be tempted to say yes, because of the inequality |sin(x)|<|x|, which implies |sin(x^n)|<|x^n|, which implies

\sum^m|\sin(x^n)|\leq \sum^m|x^n|

But for -1<x<1, the sum on the right is geometric, which converges. So the sine series converges absolutely.
I see, thank you :smile:

A similar question (but like the previous, related to a larger problem):
\forall n \in \mathbb{N},{\text{ does }}\exists x &gt; 1:\frac{1}<br /> {n}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} \leqslant \sin 1{\text{ ?}}
 
In particular, I'm looking at the function
f_n \left( x \right) = \frac{1}{n}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)}

where
\forall n \geqslant 1,\; - 1 \leqslant f_n \left( x \right) \leqslant 1
and
\forall x \in \left[ 0,1 \right], \; \frac{{df_n }}{{dx}} &gt; 0

From inspection at n=2,3,..., up to n=25 (my graphing program's constraints!),
the first critical point (i.e., dfn(x)/dx=0) that fn(x) approaches (for positive x) is always a maximum at some x>1

Furthermore, if we let xn be the x-value of this maximum for fn(x)
(i.e., the smallest x>0 such that dfn(x)/dx=0), then we notice
x_2 &gt; \cdots &gt; x_n &gt; 1
--------------------------------------------------------------------------------
*But, what is
\lim \limits_{n \to \infty } x_n \; ?

Clearly, \lim \limits_{n \to \infty } x_n \ne 1, since
f&#039;_n \left( 1 \right) = \left( {\cos 1 + 2\cos 1 + 3\cos 1 + \cdots } \right)/n &gt; 0

Also, since
\frac{{df_n }}{{dx}} = \frac{1}{n}\sum\limits_{k = 1}^n {kx^{k - 1} \cos \left( {x^k } \right)}

my question is simply
{\text{What is the smallest }}x &gt; 0\;{\text{such that }}\frac{d}<br /> {{dx}}\sum\limits_{k = 1}^{\infty} {\sin \left( {x^k } \right)} = 0\;?
 
Last edited:
No replies? :redface:
bomba923 said:
A similar question (but like the previous, related to a larger problem):
\forall n \in \mathbb{N},{\text{ does }}\exists x &gt; 1:\frac{1}<br /> {n}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} \leqslant \sin 1{\text{ ?}}
In particular, before asking
\text{What is } \lim \limits_{n \to \infty } x_n ?

someone might ask
{\text{How do we know if }}\forall n \in \mathbb{N},\;\exists x_n &gt; 1: f_n {\kern 1pt} &#039; \left( {x_n } \right) = 0\;?

which means I must
{\text{Prove/disprove that }}\forall n \in \mathbb{N},\;\exists x_n &gt; 1:\frac{d}{{dx}}\sum\limits_{k = 1}^n {\sin \left( {x_n^k } \right)} = 0

or, equivalently (due to Mean & Intermediate Value Theorems),
{\text{Prove/disprove that }}\forall n \in \mathbb{N},\;\exists x &gt; 1: \frac{1}{n} \sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} \leqslant \sin 1

(I tried induction, but showing n\ton+1 wasn't quite as easy as I hoped...)

*So, does anyone have any ideas how I may prove (or disprove :rolleyes:) that
\forall n \in \mathbb{N},\;\exists x &gt; 1: \frac{1}{n} \sum\limits_{k = 1}^n {\sin \left( x^k \right)} \leqslant \sin 1
?
 
Same as before,
\begin{gathered}<br /> f_n \left( x \right) = \frac{1}<br /> {n}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} \Rightarrow f&#039;_n \left( x \right) = \frac{1}<br /> {n}\sum\limits_{k = 1}^n {kx^{k - 1} \cos \left( {x^k } \right)} \hfill \\<br /> x_n = \min \left\{ {x &gt; 0:f&#039;_n \left( x \right) = 0} \right\} = \min \left\{ {x &gt; 0:\frac{d}<br /> {{dx}}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)} = 0} \right\} \hfill \\ \end{gathered}

From inspection, it appears that
\frac{d}{{dx}}\sum\limits_{k = 1}^{n + 1} {\sin \left( {x_n^k } \right)} &lt; 0

though...
\begin{gathered}<br /> \cos x_n + 2x_n \cos x_n^2 + 3x_n^2 \cos x_n^3 + \cdots + nx_n^{n - 1} \cos x_n^n = 0 \Rightarrow \hfill \\<br /> \cos x_n + 2x_n \cos x_n^2 + 3x_n^2 \cos x_n^3 + \cdots + \left( {n + 1} \right)x_n^n \cos x_n^{n + 1} &lt; 0 \hfill \\ <br /> \end{gathered}

~or equivalently,
\begin{gathered}<br /> \cos x_n + 2x_n \cos x_n^2 + 3x_n^2 \cos x_n^3 + \cdots + nx_n^{n - 1} \cos x_n^n = 0 \Rightarrow \hfill \\<br /> \cos x_n + 2x_n \cos x_n^2 + 3x_n^2 \cos x_n^3 + \cdots + nx_n^{n - 1} \cos x_n^n + \left( {n + 1} \right)x_n^n \cos x_n^{n + 1} &lt; 0 \hfill \\ \end{gathered}

implies (as π/2=x1>x2>...)
\left( {n + 1} \right)x_n^n \cos x_n^{n + 1} &lt; 0 \Rightarrow \cos x_n^{n + 1} &lt; 0 \Rightarrow \sqrt[{n + 1}]{{\pi /2}} &lt; x_n &lt; \sqrt[{n + 1}]{{3\pi /2}}

which, by the Squeeze Theorem, implies
\lim \limits_{n \to \infty } \sqrt[{n + 1}]{{\pi /2}} &lt; \lim \limits_{n \to \infty } x_n &lt; \lim \limits_{n \to \infty } \sqrt[{n + 1}]{{3\pi /2}} \Rightarrow \mathop {\lim }\limits_{n \to \infty } x_n = 1

*Which is strange, considering that
\begin{gathered}<br /> \forall n \in \mathbb{N},\;f&#039;_n \left( x \right) &gt; 0\;{\text{for }}0 \leqslant x \leqslant 1,\;{\text{and}} \hfill \\<br /> \mathop {\lim }\limits_{n \to \infty } f&#039;_n \left( 1 \right) = \frac{{\cos 1 + 2\cos 1 + 3\cos 1 + \cdots + n\cos 1}}<br /> {n} = \mathop {\lim }\limits_{n \to \infty } \frac{{n + 1}}<br /> {2}\cos 1,\;{\text{which diverges}} \hfill \\ <br /> \end{gathered}
 
Last edited:
Back
Top