In particular, I'm looking at the function
f_n \left( x \right) = \frac{1}{n}\sum\limits_{k = 1}^n {\sin \left( {x^k } \right)}
where
\forall n \geqslant 1,\; - 1 \leqslant f_n \left( x \right) \leqslant 1
and
\forall x \in \left[ 0,1 \right], \; \frac{{df_n }}{{dx}} > 0
From inspection at n=2,3,..., up to n=25 (my graphing program's constraints!),
the first critical point (i.e., dfn(x)/dx=0) that fn(x) approaches (for positive x) is always a maximum at some x>1
Furthermore, if we let xn be the x-value of this maximum for fn(x)
(i.e., the smallest x>0 such that dfn(x)/dx=0), then we notice
x_2 > \cdots > x_n > 1
--------------------------------------------------------------------------------
*But, what is
\lim \limits_{n \to \infty } x_n \; ?
Clearly, \lim \limits_{n \to \infty } x_n \ne 1, since
f'_n \left( 1 \right) = \left( {\cos 1 + 2\cos 1 + 3\cos 1 + \cdots } \right)/n > 0
Also, since
\frac{{df_n }}{{dx}} = \frac{1}{n}\sum\limits_{k = 1}^n {kx^{k - 1} \cos \left( {x^k } \right)}
my question is simply
{\text{What is the smallest }}x > 0\;{\text{such that }}\frac{d}<br />
{{dx}}\sum\limits_{k = 1}^{\infty} {\sin \left( {x^k } \right)} = 0\;?