Simple error analysis for probabilities

cahill8
Messages
29
Reaction score
0
I'm dealing with a histogram and want to use poisson errors for each bin. For example, having 7 items in a bin gives that bin an error of sqrt(7). I'm comparing four different data sets, each with different sizes. I'm scaling everything in terms of probabilities so the four data sets can be compared.

My smallest data set contains only 8 elements, of which 7 are in one bin, with an error of sqrt(7). Now when this is scaled to a probability, y=7/8 and yerr=sqrt(7)/8. However, this gives P=0.875+-0.33, which does not make sense since the probability cannot exceed 0. Is there something simple I'm missing?
 
Physics news on Phys.org
There are a couple things going on here. First, the Poisson approximation is only valid when the bin contains only a small fraction of the total sample. So if you have 100 elements and 7 are in one bin, the Poisson approximation is good. But if you have 8 elements and 7 are in one bin, the Poisson approximation is very very bad. You'd do better to use a binomial, where the standard error will be Npq = \sqrt{\frac{(7/8)(1-7/8)}{8}}=0.11. (Actually, it should be 0.125 but I'll not get into that.)

Second, there is no reason why a one standard error range cannot include impossible values. For very asymmetric distributions, it will commonly be the case.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top