Form of Solution for First Order ODE T'(t) - (1 - n^2/4)T(t) = 0

  • Thread starter Thread starter leopard
  • Start date Start date
  • Tags Tags
    First order Ode
leopard
Messages
123
Reaction score
0
y'(t) - ay(t) = 0

What is the form of the solution? C \cdot e^{at}

?I have this ODE:

T'(t) - (1 - \frac{n^2}{4})T(t) = 0

If I'm right, the solutions should be of the form

C \cdot e^{(1- \frac{n^2}{4})t}

My book, however, says C \cdot e^ {1- \frac{n^2}{4}t}

Who's right?
 
Last edited:
Physics news on Phys.org
I think the book forgot some parentheses
 
Brilliant.

And how about the equation

y' = (y - x)^2

what's the form of the solution here?

I find it hard to determine the form of solution of differential equations.
 
Last edited:
I would try a simple substitution first. How about v=y-x? Now see if you can separate it in those variables.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top