Simple harmonic motion equations as a function of time

Click For Summary
SUMMARY

This discussion focuses on the equations of simple harmonic motion (SHM) as functions of time, specifically addressing the impact of initial conditions on displacement, velocity, and acceleration. The primary equations presented are: displacement x(t) = A cos(ωt + φ), velocity v(t) = -Aω sin(ωt + φ), and acceleration a(t) = -Aω² cos(ωt + φ). The conversation highlights the importance of determining initial conditions, such as amplitude (A) and phase (φ), to accurately describe the motion of a mass-spring system. The example provided involves a body weighing 100 N suspended from a spring with a constant k = 220, emphasizing the calculation of angular frequency (ω) based on mass and spring constant.

PREREQUISITES
  • Understanding of simple harmonic motion (SHM) principles
  • Familiarity with the concepts of amplitude, angular frequency, and phase
  • Basic knowledge of calculus for differentiation of motion equations
  • Experience with mass-spring systems and their dynamics
NEXT STEPS
  • Learn how to calculate angular frequency (ω) from spring constant (k) and mass (m)
  • Explore the derivation of SHM equations from Newton's second law
  • Investigate the effects of damping on simple harmonic motion
  • Study the graphical representation of SHM, including phase space plots
USEFUL FOR

Students and professionals in physics, mechanical engineering, and anyone studying dynamics of oscillatory systems will benefit from this discussion. It is particularly useful for those working with mass-spring systems and analyzing their motion characteristics.

zilex191
Messages
5
Reaction score
0
I conducted a mass-sprig experiment to see how stiffness of a spring and mass affect the frequency of oscillation. In addition to this to this i have to plot a graph to show displacement,velocity and acceleration of the mass as a function of time.From my research online

For the displacement as a function of time:
x(t)=x*cos(w*t)

For the velocity as a function of time(Deriving the above):
v(t)=x*w*sin(w*t)

For the acceleration as a function of time(Deriving the above):
a(t)=-x*w^2*cos(w*t)

But when i loot at other sources it shows different equations (such as instead of cos its sin).
For the displacement as a function of time:
x(t)=x*sin(w*t)

For the velocity as a function of time(Deriving the above):
v(t)=x*w*cos(w*t)

For the acceleration as a function of time(Deriving the above):
a(t)=-x*w^2*sin(w*t)

My question is what formula do i use ?
 
Physics news on Phys.org
The formula that you use depends on what you are trying to describe, namely what is the displacement of the mass at t = 0 and what is its velocity. These are the so-called initial conditions.
 
You need to use, for position
$$x(t) = A \cos{(\omega t + \varphi)}$$
where ##A>0## is called the "amplitude" and tells you the maximum distance to the equilibrium, ##\omega## is the "angular frequency" and tells you how many oscillations you do in ##2\pi## seconds and ##\varphi\in [0,2\pi)## is called "initial phase" and essentially gives you the information on what is the initial position and initial velocity.
Differentiating you get:
$$v(t) = -A\omega \sin{(\omega t + \varphi)}, \qquad a(t) = -A\omega^2 \cos{(\omega t + \varphi)}$$

Note that your first set of equations is putting ##\varphi=0##, and the second one is putting ##\varphi=\frac{3\pi}{2}##.
 
  • Like
Likes vanhees71
kuruman said:
The formula that you use depends on what you are trying to describe, namely what is the displacement of the mass at t = 0 and what is its velocity. These are the so-called initial conditions.
Displacement at of the mass at t=0 is the maximum displacement which is 0.05 meters
 
zilex191 said:
Displacement at of the mass at t=0 is the maximum displacement which is 0.05 meters
Then you must use (see my previous post)
##A=0.05 \text{m}##
##\phi = 0##
Although I would recommend you to try to figure out the values of ##A## and ##\phi## with your data because there are always some errors in setting the initial conditions.
 
Then the expression to use is ##x(t)=0.05~(\mathrm{m})\cos(\omega t)##. How do I know? Because at ##t=0## the expression gives ##x(0)=0.05~(\mathrm{m})\cos(0)=0.05~\mathrm{m}.##

More generally, if the mass at ##t=0## is at ##x(0)=x_0## and has velocity ##v(0)=v_0##, the position at any time ##t## is given by ##x(t)=x_0\cos(\omega t)+\dfrac{v_0}{\omega}\sin(\omega t)##. Note that the expressions provided by @Gaussian97 in #3 are also correct but, in my opinion, less transparent in the general case.
 
Last edited:
kuruman said:
Then the expression to use is ##x(t)=0.05~(\mathrm{m})\cos(\omega t)##. How do I know? Because at ##t=0## the expression gives ##x(0)=0.05~(\mathrm{m})\cos(0)=0.05~\mathrm{m}.##
Thank you very much for your replies@kuruman @Gaussian97.
But in this case
Consider a body weighing 100 N suspended from a spring of constant k = 220 . At time t = 0, it has a downward velocity of 0.5 m.s-1 as it passes through the position of static equilibrium.

So i would use x(t)=Acos(ωt+φ) to work out the displacement x as a function of time, where x is measured from the position of static equilibrium?
 
zilex191 said:
Thank you very much for your replies@kuruman @Gaussian97.
But in this case
Consider a body weighing 100 N suspended from a spring of constant k = 220 . At time t = 0, it has a downward velocity of 0.5 m.s-1 as it passes through the position of static equilibrium.

So i would use x(t)=Acos(ωt+φ) to work out the displacement x as a function of time, where x is measured from the position of static equilibrium?
Yes, with ##k## and ##m## you can compute ##\omega##, then you need to solve the system of equations
$$0 = A \cos{(\varphi)}$$
$$-0.5\text{ms}^{-1} = -A\omega \sin{(\varphi)}$$
 
zilex191 said:
Thank you very much for your replies@kuruman @Gaussian97.
But in this case
Consider a body weighing 100 N suspended from a spring of constant k = 220 . At time t = 0, it has a downward velocity of 0.5 m.s-1 as it passes through the position of static equilibrium.

So i would use x(t)=Acos(ωt+φ) to work out the displacement x as a function of time, where x is measured from the position of static equilibrium?
Note that I edited my previous post and gave you a general equation to describe your situation. It might be instructive to do it the way that @Gaussian97 suggests and then redo it the way I suggest.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
9K