Simple Quantum Information Question

Pbrunett
Messages
5
Reaction score
0
Hey folks, I have a pretty simple quantum information question that I was hoping somebody could answer.

let's say I have a pure state \ket{\psi} = \alpha \ket{10} + \beta \ket{11} + \gamma \ket{01} + \theta \ket{00}.

I then perform a measurement on only the first qubit and observe a value of 1. How do I now represent the state of my system? The temptation is to just renormalize the coefficients \alpha and \beta, but it's not clear to me whether this is correct or whether I have to use a density operator. Any advice would be awesome, this is a question that popped up while I was reading N and C for self-study. Thanks for your time!
 
Physics news on Phys.org
It's a good question. I do believe it will be in the renormalized pure state you imagine, as long as the measurement on the first qubit is independent of the second qubit (perhaps the entangled particles are physically separated, for example). The way to think of this is to write the system as a linear combination of the two more obvious cases, the first having in effect \alpha=\theta and \beta=\gamma (so the second qubit is in its own independent pure state before and after the measurement on the first qubit), and the second having in effect \alpha=\beta and \gamma=\theta (so the renormalized result we are talking about is more obviously going to be correct). Rebuilding the combination will yield a pure state, and if you work it out, my money says it will be (\alpha \ket{10} + \beta \ket{11}) / (\alpha + \beta).
 
Remember that measurement is projection and renormalization.

Alright, so |\psi\rangle=a_{00}|00\rangle+a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle. A measurement of the first qubit as 1 means that |\psi\rangle should be projected onto the subspace spanned by |10\rangle and |11\rangle. Since |00\rangle and |01\rangle are orthogonal to this subspace, the projected state is simply |\psi\rangle_{\mathit{proj}}=a_{10}|10\rangle + a_{11}|11\rangle, which, however, is not generally a unit vector. So we renormalize in the standard way, and the state after measurement is |\psi_1\rangle= (a_{10}|10\rangle + a_{11}|11\rangle)/||\psi\rangle_{\mathit{proj}}|= (a_{10}|10\rangle + a_{11}|11\rangle)/\sqrt{|a_{10}|^2 + |a_{11}|^2}.
 
Oops, that's how I meant to renormalize it! Still working on the TeX...
 
Awesome, that's what I was hoping for. Thanks for the advice folks!
 
Last edited:
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top