1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Simple question about bijection from N to Z

  1. Mar 22, 2008 #1
    There is a bijection between the natural numbers (including 0) and the integers (positive, negative, 0). The bijection from N -> Z is n -> k if n = 2k OR n -> -k if n = 2k + 1.

    For example, if n = 4, then k = 2 because 2(2) = 4. If n = 3, then k = -1 because 2(1) + 1 = 3.

    My problem arises because if n = 1, then k = 0 and if n = 0, then k = 0. If n = 1, then 2(0) +1 = 1. If n = 0, then 2(0) = 0. If this function is inverted, then the element 0 in Z will map to both 0 and 1. That violates the assumption that the function is a bijection.

    Of course, this is wrong. It implies that there are more natural numbers than integers, which cannot be since the natural numbers are a proper subset of the integers. The problem is that the 0 I derived from n = 1 should be negative, whereas the 0 from n = 0 should be positive, but these are equivalent in the case of 0. Anyone know how to resolve this?
     
  2. jcsd
  3. Mar 22, 2008 #2
    Well your mapping simply isn't a bijection. everything in N greater than 0 maps to a unique number in Z, but there's nothing left for 0. it isn't so hard to make room for 0 by modifying the function for either even or odd arguments.
     
  4. Mar 22, 2008 #3
    So what you're saying is that the standard textbook presentation of the bijection between N and Z is not quite correct, right?
     
  5. Mar 25, 2008 #4
    Are you sure that the natural numbers in your book includes the 0?? Looks like it would be fine if you excluded the zero. n = 1 maps to 0, n = 2 maps to 1, n = 3 maps to -1..and so on.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Simple question about bijection from N to Z
  1. Bijection from N to Q (Replies: 5)

Loading...