MHB Simplification and manipulation

  • Thread starter Thread starter mathnap7
  • Start date Start date
  • Tags Tags
    Manipulation
mathnap7
Messages
2
Reaction score
0
Hi All,

I've been stuck on a problem and after much simplification, it has been reduced to the following:

Is it possible to factor out the (a^2 - b^2) bit. For example, if a = b, the equation would not be valid. Is there any way to factor it out using manipulation?

Best wishes,

'nap
 
Mathematics news on Phys.org
mathnap7 said:
Hi All,

I've been stuck on a problem and after much simplification, it has been reduced to the following:

Is it possible to factor out the (a^2 - b^2) bit. For example, if a = b, the equation would not be valid. Is there any way to factor it out using manipulation?

Best wishes,

'nap
Well [math]a^2 - b^2 = (a + b)(a - b)[/math] but it sounds like you are after something different. Can you post the whole problem?

-Dan
 
mathnap7 said:
Hi All,

I've been stuck on a problem and after much simplification, it has been reduced to the following:

Is it possible to factor out the (a^2 - b^2) bit. For example, if a = b, the equation would not be valid. Is there any way to factor it out using manipulation?

Best wishes,

'nap

This is a relatively common expression known as the difference of two squares and is well worth committing to memory to save time

$$a^2-b^2 = (a-b)(a+b)$$
 
Apologies, I am not too familiar with using the LaTeX plugin.

\frac{a^2b^3}{2(a^2-b^2)}\frac{(cos\phi -1)}{(a^2sin^2\phi +b^2cos^2\phi}
 
The expression is
\[
\frac{a^2b^3}{2(a^2-b^2)}\cdot\frac{\cos\phi -1}{a^2\sin^2\phi +b^2\cos^2\phi}
\]
Is there a problem in leaving it like this?

Is it possible to factor out the (a^2 - b^2) bit. For example, if a = b, the equation would not be valid. Is there any way to factor it out using manipulation?
The original expression is indeed undefined when $a=b$, and it is not just a removable singularity. Algebraic manipulations will not make it defined when $a=b$.

It may indeed help if you post the whole problem.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top