MHB Understanding Squaring Inequalities

AI Thread Summary
Squaring the inequality $$-1 \le \cos(2x) \le 1$$ leads to the incorrect conclusion that $$0 \le \cos^2(2x) \le 1$$ if done mechanically. The mistake arises from misunderstanding that squaring both sides of an inequality can produce invalid results. Instead, the correct approach recognizes that the square of any real number is non-negative, establishing the lower bound at zero. Thus, while the original inequality holds, squaring it requires careful consideration to avoid contradictions. It is crucial to remember that squaring inequalities can lead to misleading conclusions.
tmt1
Messages
230
Reaction score
0
I have

$$-1 \le \cos\left({2x}\right) \le 1 $$

If everything is squared, it goes to

$$0 \le \cos^2\left({2x}\right) \le 1 $$

and I'm not sure how $(-1)^2$ turns into $0$
 
Mathematics news on Phys.org
tmt said:
I have

$$-1 \le \cos\left({2x}\right) \le 1 $$

If everything is squared, it goes to

$$0 \le \cos^2\left({2x}\right) \le 1 $$

and I'm not sure how $(-1)^2$ turns into $0$
It doesn't. If we squared both sides and did it mechanically we'd get [math]1 \leq cos^2(2x) \leq 1[/math], which is a ridiculous statement. (It is unwise to square both sides of an inequality. Weird things happen.) Instead we set the lower bound by noting that the square of any real quantity is greater than or equal to 0.

-Dan
 
tmt said:
I have: $$-1 \le \cos\left({2x}\right) \le 1 $$

If everything is squared, it goes to: $$0 \le \cos^2\left({2x}\right) \le 1 $$

and I'm not sure how $(-1)^2$ turns into $0$. . . Actually, it doesn't.
In the first statement, we have a small quantity between -1 and +1.
. . (Think of a proper fraction, positive or negative.)

If we square that quantity, we have a positive value (greater than zero).

(Ah, Dan beat me to it.)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top