Simplifying Complex Numbers: Solving for 2/i and Understanding i^-1

  • Thread starter Thread starter Unassuming
  • Start date Start date
  • Tags Tags
    Complex Confusion
Unassuming
Messages
165
Reaction score
0

Homework Statement



Express 2/i in the form a + bi.

Homework Equations





The Attempt at a Solution



The book says -2i. What am I missing here? I don't see what they are using. All I get is 2i^-1.

Is i^-1 something that I don't know?
 
Physics news on Phys.org
Multiply the numerator and denominator of 2/i by i.
 
ugh,...thanks Dick
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top