x-is-y
- 5
- 0
If z = f(x,y) and x = r \cos{v}, y = r\sin{v} the object is to show that d = \partial since it's easier to do on computer
Show that:
\frac{d^2 z}{dr^2} + \frac{1}{r} \frac{dz}{dr} + \frac{1}{r^2} \frac{d^2 z}{dv^2} = \frac{d^2 z}{dx^2} + \frac{d^2 z}{dy^2}
It's from Adams calculus, will show where I get lost.
We have from the chain rule
\frac{dz}{dr} = \frac{dz}{dx} \frac{dx}{dr} + \frac{dz}{dy} \frac{dy}{dr}
But \frac{dx}{dr} = \cos{v} and \frac{dy}{dr} = \sin{v}, so gives:
\frac{dz}{dr} = \frac{dz}{dx} \cos{v} + \frac{dz}{dy} \sin{v}
Now we need \frac{d^2 z}{dr^2}, where I end up in trouble. We have
\frac{d^2 z}{dr^2} = \frac{d}{dr} \cos{v} \frac{dz}{dx} + \frac{d}{dr} \sin{v} \frac{dz}{dy} which can be written as
\frac{d^2 z}{dr^2} = \cos{v} \frac{d}{dr} \frac{dz}{dx} + \sin{v} \frac{d}{dr} \frac{dz}{dy}
Now my books says that
\frac{d}{dr} \frac{dz}{dx} = \cos{v} \frac{d^2 z}{dx^2} + \sin{v} \frac{d^2 z}{dy dx} if I understand correct. But I don't see how you get to this ...
Show that:
\frac{d^2 z}{dr^2} + \frac{1}{r} \frac{dz}{dr} + \frac{1}{r^2} \frac{d^2 z}{dv^2} = \frac{d^2 z}{dx^2} + \frac{d^2 z}{dy^2}
It's from Adams calculus, will show where I get lost.
We have from the chain rule
\frac{dz}{dr} = \frac{dz}{dx} \frac{dx}{dr} + \frac{dz}{dy} \frac{dy}{dr}
But \frac{dx}{dr} = \cos{v} and \frac{dy}{dr} = \sin{v}, so gives:
\frac{dz}{dr} = \frac{dz}{dx} \cos{v} + \frac{dz}{dy} \sin{v}
Now we need \frac{d^2 z}{dr^2}, where I end up in trouble. We have
\frac{d^2 z}{dr^2} = \frac{d}{dr} \cos{v} \frac{dz}{dx} + \frac{d}{dr} \sin{v} \frac{dz}{dy} which can be written as
\frac{d^2 z}{dr^2} = \cos{v} \frac{d}{dr} \frac{dz}{dx} + \sin{v} \frac{d}{dr} \frac{dz}{dy}
Now my books says that
\frac{d}{dr} \frac{dz}{dx} = \cos{v} \frac{d^2 z}{dx^2} + \sin{v} \frac{d^2 z}{dy dx} if I understand correct. But I don't see how you get to this ...