Single frequency- phase and group velocity?

AI Thread Summary
In the discussion about single frequency signals, the relationship between phase velocity and group velocity is explored, particularly in the context of electromagnetic waves. It is noted that while phase velocity may not be easily determined, the group velocity is expected to equal the speed of light, 'c'. The conversation also seeks practical examples where understanding phase and group velocities is beneficial. Clarification is requested on whether the examples should pertain to general scenarios or specifically to single frequency waves in a vacuum. Understanding these velocities is crucial in fields like telecommunications and optics.
iVenky
Messages
212
Reaction score
12
Let's consider a single frequency signal of frequency say 'f'. If the wave is propagating through a medium (EM wave with a velocity of 'c') then what will be the phase and group velocity? I believe that we can't find out the phase velocity and that the group velocity should be equal to the velocity of light 'c'.

Can you tell me a specific example where these phase and group velocities are really useful?

Thanks in advance.
 
Physics news on Phys.org
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top