Single Loop Circuit Energy Conservation

AI Thread Summary
In a single loop circuit with a resistor and an ideal battery, the principle of conservation of energy dictates that the work done by the battery equals the thermal energy dissipated in the resistor. The battery applies a force on the charges, but this force is conservative, meaning energy is not created or lost, only transformed. While some may question if voltage can convert into kinetic energy, in this scenario, the voltage is primarily transformed into heat energy, adhering to Ohm's law. The discussion emphasizes that energy is conserved, with the total energy remaining constant throughout the circuit. Understanding these principles is crucial for analyzing energy transformations in electrical circuits.
breez
Messages
65
Reaction score
0
My physics textbook states the following about a single loop circuit with a resistor and ideal battery.

"From the principle of conservation of energy, the work done by the (ideal) battery must equal the thermal energy that appears in the resistor"

Can anyone explain why energy must be conserved? Isn't the battery producing an applied force on the charges? How can we be sure this applied force is a conservative force? Also even if energy is conserved, why must the thermal dissipation equal the work done by the battery?
 
Physics news on Phys.org
Energy is always conserved by definition. If energy is not conserved then we create a new type of energy so it is.

In this case, current is never "lost", but voltage (electromotive force) is. That "voltage" is "converted" into heat energy and so it remains conserved. It's a simple application of ohm's law.
 
But couldn't some of the voltage have gone into the kinetic energy of the charges? How would you write out mathematically the conservation of energy in this case?
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?

Similar threads

Back
Top