A binary tree can be constructed, displaying the \frac{1}{n} = \frac{1}{{n + 1}} + \frac{1}{{n\left( {n + 1} \right)}} [/tex] expansion along its branches. The first couple of rows are <br />
<div class="bbCodeBlock bbCodeBlock--screenLimited bbCodeBlock--code">
<div class="bbCodeBlock-title">
<i class="fa--xf fal fa-code "><svg xmlns="http://www.w3.org/2000/svg" role="img" aria-hidden="true" ><use href="/data/local/icons/light.svg?v=1756418028#code"></use></svg></i> Code:
</div>
<div class="bbCodeBlock-content" dir="ltr">
<pre class="bbCodeCode" dir="ltr" data-xf-init="code-block" data-lang=""><code>1/2
1/3, 1/6
1/4, 1/12, 1/7, 1/42
1/5, 1/20, 1/13, 1/156, 1/8, 1/56 1/43, 1/(42*43)
1/6, 1/30, 1/21, 1/420, 1/14, 1/182, 1/157, 1/(156*157) 1/9, 1/72, 1/57, 1/(56*57) 1/44, 1/(43*44), 1/(42*43+1), 1/(42*43*(42*43+1))</code></pre>
</div>
</div><br />
But what about rational numbers greater than one??<br />
<br />
\begin{gathered}<br />
3 = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \hfill \\ \frac{1}{2} + \left( {\frac{1}{3} + \frac{1}{6}} \right) + \left( {\frac{1}{4} + \frac{1}{{12}} + \frac{1}{7} + \frac{1}{{42}}} \right) + \left( {\frac{1}{5} + \frac{1}{{20}} + \frac{1}{{13}} + \frac{1}{{156}} + \frac{1}{8} + \frac{1}{{42}} + \frac{1}{{43}} + \frac{1}{{42 \cdot 43}}} \right) + \frac{1}{2}^{*} + \frac{1}{2}^{**} \hfill \\ \end{gathered}<br />
<br />
*I cannot continue expanding this "1/2" term as 1/6 was added before.<br />
**I cannot continue expanding this "1/2" term as 1/7 was added before.<br />
<br />
Of course, I may consider deeper levels/rows, but to show that any natural number can be expanded into Egyptian fractions, I would (likely) have to show that there is an infinite quantity of rows containing no elements in common. How would I do that?