SNRDB= 10*log10(SNR) -> log base 10SNR = 10.^(SNRDB/10)

  • Thread starter Thread starter hariyo
  • Start date Start date
  • Tags Tags
    Base Log
hariyo
Messages
14
Reaction score
0
SNRDB= 10*log10(SNR) --> log base 10SNR = 10.^(SNRDB/10)

SNRDB= 10*log10(SNR) --> log base 10

SNR = 10.^(SNRDB/10) ---(1)

SNR = exp(SNRDB*ln(10)/10) ---(2)

How is equation 2 comes as I checked both equation 1 & 2 are equivalent numerically. I am not able to derive equation 2.
 
Physics news on Phys.org


hariyo said:
SNRDB= 10*log10(SNR) --> log base 10

SNR = 10.^(SNRDB/10) ---(1)

SNR = exp(SNRDB*ln(10)/10) ---(2)

How is equation 2 comes as I checked both equation 1 & 2 are equivalent numerically. I am not able to derive equation 2.

10=exp(ln(10))=e^(ln(10)). Put that into one of the 10's in the second equation and use properties of exponents.
 


Thankyou I got it now.Cheers!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top