Solid of Rotation:I Need Verification

  • Thread starter Thread starter zcabral
  • Start date Start date
  • Tags Tags
    Solid
zcabral
Messages
30
Reaction score
0

Homework Statement


Determine the volume of a sold obtained by rotating the region bounded by y=x^2-2x and y=x about the line y =4

Homework Equations


The Attempt at a Solution


Let:
y1 = x
y2 = x^2 - 2x.
v be the volume.

y1 and y2 meet where:
x^2 - 2x = x
x^2 - 3x = 0
x(x - 3) = 0
x = 0, x = 3.

The straight line is closer to y = 4 than the parabola between x = 0 and x = 3.

v = pi int(0, 3)[ (y2 - 4)^2 - (y1 - 4)^2 ] dx
= pi int(0, 3) [ (x^2 - 2x - 4)^2 - (x - 4)^2 ] dx
= pi int(0, 3) [ x^4 + 4x^2 + 16 - 4x^3 + 16x - 8x^2 - x^2 - 16 + 8x ] dx
= pi int(0, 3) [ x^4 - 4x^3 - 5x^2 + 24x ] dx
= pi [ x^5 / 5 - x^4 - 5x^3 / 3 + 12x^2 ](0, 3)
= pi [ 3^5 / 5 - 3^4 - 5 * 3^3 / 3 + 12 * 3^2 ]
= 30.6 pi.

IS THIS RIGHT?
 
Physics news on Phys.org
I got the same answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top