Solid State: Diamond lattice and scattering

barrinmw
Messages
6
Reaction score
0
I have the following homework question I am working on.

I am given three scattering angles: 42.8, 73.2, 89. (in degrees) without the wavelength of the light used. I am to show that these are consistent with a diamond lattice.

I started with Laue's Law: delta(k) = G and according to the professor in this instance, I am only worried about magnitudes.

By conservation of energy I know |k| = |k'|

This led me to |G| = 2 |k| Sin[theta / 2] where |k| = 2 pi / lambda

Now, if I take the ratios of |G_1|, |G_2|, |G_3| I get:

|G_2| / |G_1| = 1.63; |G_3| / |G_2| = 1.68

To get G, I started with the lattice vectors of the primitive cell of diamond which I believe are the same lattice vectors of the primitive cell of an FCC lattice.

So a_1 = (1/2) a (yhat + zhat); a_2 = (1/2) a (xhat + zhat); a_3 = (1/2) a (xhat + yhat)

I form the reciprocal lattice basis vectors from these.

b_1 = (2 pi / a) (-xhat + yhat + zhat); b_1 = (2 pi / a) (xhat + yhat - zhat); b_1 = (2 pi / a) (xhat - yhat + zhat)

Now one problem is, that I don't know how to construct the G's from this since I don't know how to find the coefficients for the diamond lattice. I know that G = v_1 * b_1 + v_2 * b_2 + v_2 * b_2 but in the end I know that |G| should equal (2 pi / a) Sqrt( v_1^2 + v_2^2 + v_3^2)

Any help would be appreciated, once I get this I can answer the next part of the question where he gives me the wavelength of the x-rays and show that "a" is that for carbon diamond lattice.
 
Physics news on Phys.org
Maybe this question is more apt for the advanced physics homework forum.
 
I can try there, I figured here because this is from an Intro to Solid State course.
 
You are doing fine. I get the same value for G_1/G_2, but not for G_3/G_2.

Since you are using a primitive unit cell for the diamond lattice, your v_1, v_2 and v_3 can be any integer, 0,+/-1, +/-2,...

Try using an Exel spreadsheet or python program to calculate the first few G and their ratios.
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top