Solution of 2 Equations with 3 Variables

  • Thread starter Thread starter m_niz
  • Start date Start date
  • Tags Tags
    Variables
m_niz
Messages
6
Reaction score
0
Hello there,

I have got the following equations, please see the attached file.



Have to find Es, Einf and T. others are known. How to do that? Thanks.
 

Attachments

Last edited:
Physics news on Phys.org
You should understand that most people will not open WORD files for fear of viruses. Since I have very strong virus protection, I took the chance. Of course, it took a while to load since it had to go through all the virus tests.

In any case, I am now embarassed that I did since I should have seen, from the title "New Microsoft Word Document" that the document is blank!
 
Yeah Halls is right, it's completely blank.
 
Very Sorry, I have loaded the correct file now! actually its a bit tricky to write these equations so I just attached the file. Thanks
 
The two equations, then, are
\epsilon'= \epsilon_\infty+ \frac{\epsilon_s- \epsilon_\infty}{1+ (\omega \tau)^2}
and
\epsilon"= \frac{(\epsilon_s- \epsilon_\infty)\omega\tau}{1+ (\omega \tau)^2}}

Of course, since there are only two equations in 3 unknown values, you cannot solve for all three. What you could do is solve for two of them in terms of the third.

You might, for example, multiply the first equation by \omega\tau, so that the two fractions are the same, and then subtract one equation from the other, eliminating the fractions:
\epsilon'- \epsilon"= \epsilon_\infty (\omega\tau)
Then
\epsilon_\infty= \frac{\epsilon'-\epsilon"}{\omega\tau}
so you have solved for \epsilon_\infty in terms of \tau.

Replace \epsilon_\infty by that in either of the two equations, and you can then also solve for \epsilon_\infty in terms of \tau.
 
Thanks Hall! Can you write me a detailed solution. I am not very good in maths.
 
Back
Top