Solution Sets and Linear Equations

e(ho0n3
Messages
1,349
Reaction score
0
Problem
Prove that, where a, b, c, d, e are real numbers and a <> 0, if ax + by = c has the same solution set as ax + dy = e, then they are the same equation.

Given Solution
If a <> 0 then solution set of the first equation is {(x,y) | x = (c - by)/a}. Taking y = 0 gives the solution (c/a, 0), and since the second equation is supposed to have the same solution set, substituting into it gives a(c/a) + d(0) = e, so c = e. Then taking y = 1 in x = (c - by)/a gives a((c - b)/a) + d = e, which gives b = d. Hence they are the same equation.

My Thoughts
I don't buy into the solution above because it assumes that one of the members of the solution set has y = 0 and that another has y = 1. And anyways, you can take any two-variable two-equation linear system (where the equations aren't equal) and solve to get the solution set. Is this problem bogus or what?
 
Physics news on Phys.org
No. The equations define straight lines. They are the same solution set iff they are the same line, which is iff they are "the same equation"
 
I don't buy into the solution above because it assumes that one of the members of the solution set has y = 0 and that another has y = 1.

So what you're saying is that if a != 0, then it's possible that ax + b = c (or ax = c) are not solvable (for x)?
 
OK. I see where I was confused. This makes sense now. Cheers.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top