Solution: Show ui=vi if u0=v0 in Difference Equations

  • Thread starter Thread starter simmonj7
  • Start date Start date
  • Tags Tags
    Difference
simmonj7
Messages
65
Reaction score
0

Homework Statement


Suppose that {uk} and {vk} are sequences satisfying uk = Auk-1 k = 1, 2, ... and vk = Avk-1 k = 1, 2,... Show that if u0 = v0 then ui = vi for all values of i.


Homework Equations



uk --> is u subscript k
u0 --> is u subscript 0
uk-1 --> is u subscript k-1
ui --> is u subscript i


The Attempt at a Solution



Well so far I have...
uk = A^k(u0)
= A^k(a1u1 + a2u2 +...+anun)
= a1(A^k)u1 + a2(A^k)u2 +...+ an(A^k)un
= a1(lambda1^k)u1 + a2(lambda2^k) +...+ an(lambdan^k)un

But since u0 = v0 A^k(u0) = A^k(v0)

But after there I get uncertain cause I think my next steps would be:
= A^k(a1v1 + a2v2 +...+ anvn)
= a1(A^k)v1 + a2(A^k)v2 +...+ an(A^k)vn
= a1(lambda1^k)v1 + a2(lambda2^k)v2 +...+ an(lambdan^k)vn)

Then conclude uk = vk?
Is this correct?

Thanks! :)
 
Physics news on Phys.org
Hi simmonj7! :smile:

(try using the X2 tag just above the Reply box :wink:)
simmonj7 said:
Well so far I have...
uk = A^k(u0)
= A^k(a1u1 + a2u2 +...+anun)
= a1(A^k)u1 + a2(A^k)u2 +...+ an(A^k)un
= a1(lambda1^k)u1 + a2(lambda2^k) +...+ an(lambdan^k)un

(what are the as and the lambdas? :confused: anyway …)

Hint: put wk = uk - vk, for all k. :wink:
 
When solving a difference equation all the way out you have to find the eigen values, then find the corresponding eigen vectors and then have to find a relationship between those eigen vectors and the vector x0. Thus x0 = a1u1 + a2u2 +...+ anun is the relationship between all the eigen vectors.

Then you just plug in that relationship for x0 into the equation xk = (A^k)x0. From there you distribute the A^k through and then (because (A)x = (lambda)x then (A^k)x = (lambda^k)x where lambda is an eigen vector of A) you substitute that back into the equation and that is what all the a's and lambda's are.
 
But there's only one eigenvalue here (and it's A). :confused:
 
Where are you getting that there is only one eigen value? There is no way to determine how many eigen values there are of A...
 
The eigenvalues of A don't matter …

all that matters is the roots of the characteristic equation of this recurrence relation which in this case is the single root, A.

Try using the wk I mentioned earlier. :smile:
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top