Solvability v.s. the existance of a solution for nonlinear ODE's

  • Thread starter Thread starter pergradus
  • Start date Start date
  • Tags Tags
    Nonlinear
pergradus
Messages
137
Reaction score
1
In physics we're told often that there is no analytical way to solve most nonlinear differential equations (I don't know if this can be proven or not, or it's just assumed because no one has found a way to do it), so we use a computer to solve them numerically.

I'm wondering though, assuming it is impossible to solve a differential equation by analytical means, does that mean that there is no analytical solution which exists? That is, could you somehow guess some well-defined function that satisfies the nonlinear equation, even if there's no way of directly solving the equation for it?
 
Mathematics news on Phys.org
In many cases (most, actually) there just doesn't exist a solution in closed form. The functions you're used to (i.e. functions that have closed form representations) are only a very small subset of all the possible functions; it's natural that they would satisfy only a small subset of PDE's and ODE's.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top