MHB Solve Equation: Find Real $a$ for $10^a+12^a-14^a=13^a-11^a$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The equation 10^a + 12^a - 14^a = 13^a - 11^a is analyzed through the function f(x) = 10^x + 11^x + 12^x - 13^x - 14^x. It is determined that f(x) equals zero at x = 2. For values greater than 2, the function decreases sharply due to the dominance of negative terms, while for values less than 2, positive terms dominate, keeping f(x) positive. Thus, x = 2 is identified as the only solution to the equation. The analysis concludes that the only real number a satisfying the equation is a = 2.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all real numbers $a$ for which $10^a+12^a-14^a=13^a-11^a$.
 
Mathematics news on Phys.org
anemone said:
Find all real numbers $a$ for which $10^a+12^a-14^a=13^a-11^a$.

a= 2
is a aolution

Take $f(a) = 14^a + 13^a – 12^a – 11 ^a – 10 ^a
= (14^a – 12^a) + (13^a – 11^a ) – 10^a$
We have $14^3 – 12^3 > 10^3$ and gap increases for a >=3 the expression is positive
So we need to look for value < 3
Check for 0 , 1, 2 and we see that a =2 is the integer solution
It may have some non integer solution
 
anemone said:
Find all real numbers $a$ for which $10^a+12^a-14^a=13^a-11^a$.

[sp]Let's consider the function...

$\displaystyle f(x) = 10^{x} + 11^{x} + 12^{x} - 13^{x} - 14^{x}\ (1)$

By inspection we find easily that (1) vanishes for x=2. For x>2 the negative terms of (1) are dominating, so that thye function sharply decreases. For x<2 the positive terms of (1) are dominating so that is $\lim_{x \rightarrow - \infty} f(x) = 0$ and everywhere is f(x) > 0. The conclusion is that x=2 is the only zero of f(x)...[/sp]

Kind regards

$\chi$ $\sigma$
 
anemone said:
Find all real numbers $a$ for which $10^a+12^a-14^a=13^a-11^a$.

Solution:

Given $10^a+11^a+12^a = 13^a+14^a$

Now Divide both side by $(12.5)^a$, where $(11.5)^a>0\forall a\in \mathbb{R}$

So $\displaystyle \left(\frac{10}{12.5}\right)^a+\left(\frac{11}{12.5}\right)^a+\left(\frac{12}{12.5}\right)^a = \left(\frac{13}{12.5}\right)^a+\left(\frac{14}{12.5}\right)^a$

So Here $\bf{L.H.S}$ is a sum of strictly Decreasing function while $\bf{R.H.S}$ is a sum of strictly increasing function.

So these two exponential curves intersect each other exactly at one point

So by inspection we get $a = 2$ only solution.
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
19
Views
3K
Replies
4
Views
2K
Replies
9
Views
107
Replies
7
Views
2K
Replies
24
Views
3K
Back
Top