MHB Solve equation: $y+k^3=\sqrt[3]{k-y}$

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The equation $y+k^3=\sqrt[3]{k-y}$ is discussed with a focus on the implications of the function $f(k)=y+k^3$ and its inverse. A participant questions why $k$ appears on the right-hand side of the equation when deriving the inverse function. The response clarifies that using the identity $f(f^{-1}(k))=k$ leads to the conclusion that $f^{-1}(k)=\sqrt[3]{k-y}$. The conversation emphasizes the elegance of the solution provided by a participant named Jacks, while also addressing the confusion regarding the function's properties. The discussion concludes with a reaffirmation of the mathematical reasoning behind the inverse function.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $y+k^3=\sqrt[3]{k-y}$ where $k$ is a real parameter.
 
Mathematics news on Phys.org
Consider function $f(k) = y + k^3$, then $f^{-1}(k) = \sqrt[3]{k - y}$. Hence \[f^{-1}(k) = f(k)\] This can happen if and only if \[k = f(k) = f^{-1}(k)\] i.e. \[k = \sqrt[3]{k - y} = y + k^3\] So \[\boxed{y = k - k^3}\]
 
Last edited by a moderator:
jacks said:
Consider function $f(k) = y + k^3$, then $f^{-1}(k) = \sqrt[3]{k - y}$. Hence \[f^{-1}(k) = f(k)\] This can happen if and only if \[k = f(k) = f^{-1}(k)\] i.e. \[k = \sqrt[3]{k - y} = y + k^3\] So \[\boxed{y = k - k^3}\]

Hey jacks, thanks for participating and your solution is simple, elegant and nice! Well done, jacks!:)
 
Hi, anemone and jacks!

Thankyou for your answers. Jacks solution is very elegant!(Star)

I have one question. I do not understand why the following implication is true:
$$ f(k)=y+k^3 \Rightarrow f^{-1}(k)=\sqrt[3]{\mathbf{k}-y} $$

Why is k appearing on the RHS?

I would deduce the following:
$$ f(k)=y+k^3 \Rightarrow f^{-1}(k)=\sqrt[3]{f(k)-y}$$
By definition:
$$f(k)=y+k^3=\sqrt[3]{k-y}=\sqrt[3]{f(k)-y} \Rightarrow f(k) = k \Rightarrow y+k^3=k \Rightarrow y = k-k^3$$
 
lfdahl said:
Hi, anemone and jacks!

Thankyou for your answers. Jacks solution is very elegant!(Star)

I have one question. I do not understand why the following implication is true:
$$ f(k)=y+k^3 \Rightarrow f^{-1}(k)=\sqrt[3]{\mathbf{k}-y} $$

Why is k appearing on the RHS?

I would deduce the following:
$$ f(k)=y+k^3 \Rightarrow f^{-1}(k)=\sqrt[3]{f(k)-y}$$
By definition:
$$f(k)=y+k^3=\sqrt[3]{k-y}=\sqrt[3]{f(k)-y} \Rightarrow f(k) = k \Rightarrow y+k^3=k \Rightarrow y = k-k^3$$
Hi lfdahl,

I am sorry for I only replied to you days after...I thought to myself to let jacks to handle it and I would only chime in if we didn't hear from jacks 24 hours later. But it somehow just slipped my mind.:(

Back to what you asked us...I believe if we use the identity

$f(f^{-1}(k))=k$,

and that for we have $f(k)=y+k^3$, we would end up with getting $f^{-1}(k)=\sqrt[3]{\mathbf{k}-y} $, does that answer your question, lfdahl?:)

$f(k)=y+k^3$

$f(f^{-1}(k))=k$

$y+(f^{-1}(k))^3=k$

$(f^{-1}(k))^3=k-y$

$f^{-1}(k)=\sqrt[3]{k-y}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K