So, do you see how the path analogy to the square root works? for sqaure root, you take the positive square root of the modulus and half the argument. Now imagine walking round the unit circle, at 1, thte sqaure root is 1, wander to the argument pi/4 and the square root there has argument pi/8, and so on. Now as you get round to 1 again from the other side you've got a problem, as by halving arugments you should be getting closer to minus 1... so imagine there were two copies of the complex plane, both split long the positive part of the real axis. Now as you approach 1 from below, you climb from one plane to the other where we have the other answer to the root - sqrt(1)=-1 there, and if you carry on around the circle in that plane, as you get back to the 1 again you see that the sqrt here is approching 1 again, so yuo climb back down to the plane below. The 'surface' is what you get if you glue the two planes along the slit. for logs once you start going round and round you never get back to the start though.