Solve for X in AXB=C: Matrices Question 4

  • Thread starter Thread starter BilloRani2012
  • Start date Start date
  • Tags Tags
    Matrices
AI Thread Summary
To solve for matrix X in the equation AXB=C, first define X with four variables representing its elements. The correct approach involves multiplying A by X and then the result by B, setting this equal to matrix C. An alternative method is to find the inverses of matrices A and B, allowing you to rearrange the equation to X = A^(-1)CB^(-1). It's important to clarify that the term "cross product" is incorrect in this context, as X is a matrix, not a vector. The discussion emphasizes the importance of proper matrix multiplication techniques to find the solution.
BilloRani2012
Messages
44
Reaction score
0

Homework Statement


If:

A = l 1 -3 l , B = l -1 2 l C = l -12 -11 l
l 2 1 l l 3 1 l l -10 -1 l

Then, find X if AXB=C

Homework Equations





The Attempt at a Solution


I don't know how I would start this problem??
 
Physics news on Phys.org
I think you would pick 4 variables, say t,u,v,w to represent the 4 elements in matrix X. Perform the multiplication and set the result equal to C. This should give you four ordinary equations, one for each element. Solve them for t,u,v,w.
 
When you say: Perform the multiplication and set the result equal to C. Do you mean multiply A&B?
 
"find X if AXB=C" means you multiply A by X, then the result by B.
Set that result equal to C.
 
It might be easier to find the inverse of both A and B and to multiply the matrix equation AXB=C with A-1 from left and B-1 from right to get X. (X=A-1CB-1)

ehild
 
Don't you need the cross product and not multiplication?
 
X is not for "cross product" it is an unknown matrix you need to find.

ehild
 
Back
Top