MHB Solve for x & y: $a+b\sqrt{2}$ Given $2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around solving the equation 2x + y - √(3x² + 3xy + y²) = 2 + √2, where x and y are expressed in the form a + b√2, with a and b as positive integers. Participants share their approaches to finding suitable values for x and y that satisfy the equation. One contributor praises another's solution as neat and elegant, while acknowledging their own method as more complex. The focus remains on deriving the correct values for x and y based on the given constraints. The thread emphasizes the challenge of the problem and the various strategies employed to tackle it.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $x$ and $y$ are of the form $a+b\sqrt{2}$ ($a$ and $b$ are both positive integers) that satisfy the equation

$2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$.

Find such $x$ and $y$.
 
Mathematics news on Phys.org
anemone said:
Given $x$ and $y$ are of the form $a+b\sqrt{2}$ ($a$ and $b$ are both positive integers) that satisfy the equation

$2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$.

Find such $x$ and $y$.

Rearranging and squaring, then rearranging again (with the quadratic formula in mind), we arrive at

$$x=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+12(2+\sqrt2)^2}}{2}=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+72+48\sqrt2}}{2}$$

We now seek positive integers $a,b,c,d$ such that

$$a^2+2b^2+72=c^2+2d^2$$

and

$$2ab+48=2cd$$.

By inspection, $a=b=1$ and $c=d=5$, so $x=6+4\sqrt2,y=1+\sqrt2$ are one such $x$ and $y$.
 
greg1313 said:
Rearranging and squaring, then rearranging again (with the quadratic formula in mind), we arrive at

$$x=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+12(2+\sqrt2)^2}}{2}=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+72+48\sqrt2}}{2}$$

We now seek positive integers $a,b,c,d$ such that

$$a^2+2b^2+72=c^2+2d^2$$

and

$$2ab+48=2cd$$.

By inspection, $a=b=1$ and $c=d=5$, so $x=6+4\sqrt2,y=1+\sqrt2$ are one such $x$ and $y$.

Thanks greg1313 for participating! Your solution is neat and elegant, good job!

My solution (which is clearly more convoluted than yours:o):

Let $x=a+b\sqrt{2},\,y=c+d\sqrt{2}$, where $a,\,b,\,c,\,d\in \Bbb{N}$.

Squaring the given equality, and rearrange it, we have:

$x^2+(y-8-4\sqrt{2})x+(6+4\sqrt{2}-4y-2\sqrt{2}y)=0$

$x^2+(c-8+(d-4)\sqrt{2})x+(6-4c-4d+(4-4d-2c)\sqrt{2})=0$

Assume the quadratic in $x$ has roots $x_1=a+b\sqrt{2}$ and $x_2=a-b\sqrt{2}$, we find $d=4,\,c=-6$ but we're told $c>0$, so our assumption is wrong.

Next, it's safe to assume that the quadratic in $x$ above has roots $x_1=a+2\sqrt{2}$ and $x_2=p-2\sqrt{2}$, where $p$ is an integer, and $b=2$, and comes from

$\underline{(x-(a+2\sqrt{2}))(x-(p-2\sqrt{2}))}(x-(a-2\sqrt{2}))(x-(p+2\sqrt{2}))=0$

Again, we find $d=4$. We find $ap=-2(1+2c),\,a+p=8-c,\,p-a=-6-c$. If we let $p=-2$, then we get $c=3$ and therefore $a=7$.

Thus, one of the solutions for $(x,\,y)$ is $(7+2\sqrt{2},\,3+4\sqrt{2})$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top