Solve for x & y: $a+b\sqrt{2}$ Given $2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the equation $2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$, where both $x$ and $y$ are expressed in the form $a+b\sqrt{2}$, with $a$ and $b$ as positive integers. Participants, including greg1313, provided various methods to derive the values of $x$ and $y$. The solutions highlighted the importance of manipulating the equation to isolate terms involving $x$ and $y$, ultimately leading to specific integer solutions that satisfy the given conditions.

PREREQUISITES
  • Understanding of algebraic manipulation and equations involving square roots.
  • Familiarity with the properties of integers and irrational numbers.
  • Knowledge of the form $a+b\sqrt{2}$ and its implications in number theory.
  • Basic experience with solving quadratic equations.
NEXT STEPS
  • Research methods for solving equations involving square roots and irrational numbers.
  • Explore the properties of numbers in the form $a+b\sqrt{2}$.
  • Learn about algebraic identities that can simplify complex equations.
  • Investigate techniques for isolating variables in multi-variable equations.
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in solving complex equations involving irrational numbers will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $x$ and $y$ are of the form $a+b\sqrt{2}$ ($a$ and $b$ are both positive integers) that satisfy the equation

$2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$.

Find such $x$ and $y$.
 
Mathematics news on Phys.org
anemone said:
Given $x$ and $y$ are of the form $a+b\sqrt{2}$ ($a$ and $b$ are both positive integers) that satisfy the equation

$2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$.

Find such $x$ and $y$.

Rearranging and squaring, then rearranging again (with the quadratic formula in mind), we arrive at

$$x=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+12(2+\sqrt2)^2}}{2}=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+72+48\sqrt2}}{2}$$

We now seek positive integers $a,b,c,d$ such that

$$a^2+2b^2+72=c^2+2d^2$$

and

$$2ab+48=2cd$$.

By inspection, $a=b=1$ and $c=d=5$, so $x=6+4\sqrt2,y=1+\sqrt2$ are one such $x$ and $y$.
 
greg1313 said:
Rearranging and squaring, then rearranging again (with the quadratic formula in mind), we arrive at

$$x=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+12(2+\sqrt2)^2}}{2}=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+72+48\sqrt2}}{2}$$

We now seek positive integers $a,b,c,d$ such that

$$a^2+2b^2+72=c^2+2d^2$$

and

$$2ab+48=2cd$$.

By inspection, $a=b=1$ and $c=d=5$, so $x=6+4\sqrt2,y=1+\sqrt2$ are one such $x$ and $y$.

Thanks greg1313 for participating! Your solution is neat and elegant, good job!

My solution (which is clearly more convoluted than yours:o):

Let $x=a+b\sqrt{2},\,y=c+d\sqrt{2}$, where $a,\,b,\,c,\,d\in \Bbb{N}$.

Squaring the given equality, and rearrange it, we have:

$x^2+(y-8-4\sqrt{2})x+(6+4\sqrt{2}-4y-2\sqrt{2}y)=0$

$x^2+(c-8+(d-4)\sqrt{2})x+(6-4c-4d+(4-4d-2c)\sqrt{2})=0$

Assume the quadratic in $x$ has roots $x_1=a+b\sqrt{2}$ and $x_2=a-b\sqrt{2}$, we find $d=4,\,c=-6$ but we're told $c>0$, so our assumption is wrong.

Next, it's safe to assume that the quadratic in $x$ above has roots $x_1=a+2\sqrt{2}$ and $x_2=p-2\sqrt{2}$, where $p$ is an integer, and $b=2$, and comes from

$\underline{(x-(a+2\sqrt{2}))(x-(p-2\sqrt{2}))}(x-(a-2\sqrt{2}))(x-(p+2\sqrt{2}))=0$

Again, we find $d=4$. We find $ap=-2(1+2c),\,a+p=8-c,\,p-a=-6-c$. If we let $p=-2$, then we get $c=3$ and therefore $a=7$.

Thus, one of the solutions for $(x,\,y)$ is $(7+2\sqrt{2},\,3+4\sqrt{2})$.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K