MHB Solve for x & y: $a+b\sqrt{2}$ Given $2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion revolves around solving the equation 2x + y - √(3x² + 3xy + y²) = 2 + √2, where x and y are expressed in the form a + b√2, with a and b as positive integers. Participants share their approaches to finding suitable values for x and y that satisfy the equation. One contributor praises another's solution as neat and elegant, while acknowledging their own method as more complex. The focus remains on deriving the correct values for x and y based on the given constraints. The thread emphasizes the challenge of the problem and the various strategies employed to tackle it.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $x$ and $y$ are of the form $a+b\sqrt{2}$ ($a$ and $b$ are both positive integers) that satisfy the equation

$2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$.

Find such $x$ and $y$.
 
Mathematics news on Phys.org
anemone said:
Given $x$ and $y$ are of the form $a+b\sqrt{2}$ ($a$ and $b$ are both positive integers) that satisfy the equation

$2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$.

Find such $x$ and $y$.

Rearranging and squaring, then rearranging again (with the quadratic formula in mind), we arrive at

$$x=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+12(2+\sqrt2)^2}}{2}=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+72+48\sqrt2}}{2}$$

We now seek positive integers $a,b,c,d$ such that

$$a^2+2b^2+72=c^2+2d^2$$

and

$$2ab+48=2cd$$.

By inspection, $a=b=1$ and $c=d=5$, so $x=6+4\sqrt2,y=1+\sqrt2$ are one such $x$ and $y$.
 
greg1313 said:
Rearranging and squaring, then rearranging again (with the quadratic formula in mind), we arrive at

$$x=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+12(2+\sqrt2)^2}}{2}=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+72+48\sqrt2}}{2}$$

We now seek positive integers $a,b,c,d$ such that

$$a^2+2b^2+72=c^2+2d^2$$

and

$$2ab+48=2cd$$.

By inspection, $a=b=1$ and $c=d=5$, so $x=6+4\sqrt2,y=1+\sqrt2$ are one such $x$ and $y$.

Thanks greg1313 for participating! Your solution is neat and elegant, good job!

My solution (which is clearly more convoluted than yours:o):

Let $x=a+b\sqrt{2},\,y=c+d\sqrt{2}$, where $a,\,b,\,c,\,d\in \Bbb{N}$.

Squaring the given equality, and rearrange it, we have:

$x^2+(y-8-4\sqrt{2})x+(6+4\sqrt{2}-4y-2\sqrt{2}y)=0$

$x^2+(c-8+(d-4)\sqrt{2})x+(6-4c-4d+(4-4d-2c)\sqrt{2})=0$

Assume the quadratic in $x$ has roots $x_1=a+b\sqrt{2}$ and $x_2=a-b\sqrt{2}$, we find $d=4,\,c=-6$ but we're told $c>0$, so our assumption is wrong.

Next, it's safe to assume that the quadratic in $x$ above has roots $x_1=a+2\sqrt{2}$ and $x_2=p-2\sqrt{2}$, where $p$ is an integer, and $b=2$, and comes from

$\underline{(x-(a+2\sqrt{2}))(x-(p-2\sqrt{2}))}(x-(a-2\sqrt{2}))(x-(p+2\sqrt{2}))=0$

Again, we find $d=4$. We find $ap=-2(1+2c),\,a+p=8-c,\,p-a=-6-c$. If we let $p=-2$, then we get $c=3$ and therefore $a=7$.

Thus, one of the solutions for $(x,\,y)$ is $(7+2\sqrt{2},\,3+4\sqrt{2})$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top