MHB Solve for x & y: $a+b\sqrt{2}$ Given $2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given $x$ and $y$ are of the form $a+b\sqrt{2}$ ($a$ and $b$ are both positive integers) that satisfy the equation

$2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$.

Find such $x$ and $y$.
 
Mathematics news on Phys.org
anemone said:
Given $x$ and $y$ are of the form $a+b\sqrt{2}$ ($a$ and $b$ are both positive integers) that satisfy the equation

$2x+y-\sqrt{3x^2+3xy+y^2}=2+\sqrt{2}$.

Find such $x$ and $y$.

Rearranging and squaring, then rearranging again (with the quadratic formula in mind), we arrive at

$$x=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+12(2+\sqrt2)^2}}{2}=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+72+48\sqrt2}}{2}$$

We now seek positive integers $a,b,c,d$ such that

$$a^2+2b^2+72=c^2+2d^2$$

and

$$2ab+48=2cd$$.

By inspection, $a=b=1$ and $c=d=5$, so $x=6+4\sqrt2,y=1+\sqrt2$ are one such $x$ and $y$.
 
greg1313 said:
Rearranging and squaring, then rearranging again (with the quadratic formula in mind), we arrive at

$$x=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+12(2+\sqrt2)^2}}{2}=\dfrac{4(2+\sqrt2)-y+\sqrt{y^2+72+48\sqrt2}}{2}$$

We now seek positive integers $a,b,c,d$ such that

$$a^2+2b^2+72=c^2+2d^2$$

and

$$2ab+48=2cd$$.

By inspection, $a=b=1$ and $c=d=5$, so $x=6+4\sqrt2,y=1+\sqrt2$ are one such $x$ and $y$.

Thanks greg1313 for participating! Your solution is neat and elegant, good job!

My solution (which is clearly more convoluted than yours:o):

Let $x=a+b\sqrt{2},\,y=c+d\sqrt{2}$, where $a,\,b,\,c,\,d\in \Bbb{N}$.

Squaring the given equality, and rearrange it, we have:

$x^2+(y-8-4\sqrt{2})x+(6+4\sqrt{2}-4y-2\sqrt{2}y)=0$

$x^2+(c-8+(d-4)\sqrt{2})x+(6-4c-4d+(4-4d-2c)\sqrt{2})=0$

Assume the quadratic in $x$ has roots $x_1=a+b\sqrt{2}$ and $x_2=a-b\sqrt{2}$, we find $d=4,\,c=-6$ but we're told $c>0$, so our assumption is wrong.

Next, it's safe to assume that the quadratic in $x$ above has roots $x_1=a+2\sqrt{2}$ and $x_2=p-2\sqrt{2}$, where $p$ is an integer, and $b=2$, and comes from

$\underline{(x-(a+2\sqrt{2}))(x-(p-2\sqrt{2}))}(x-(a-2\sqrt{2}))(x-(p+2\sqrt{2}))=0$

Again, we find $d=4$. We find $ap=-2(1+2c),\,a+p=8-c,\,p-a=-6-c$. If we let $p=-2$, then we get $c=3$ and therefore $a=7$.

Thus, one of the solutions for $(x,\,y)$ is $(7+2\sqrt{2},\,3+4\sqrt{2})$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top