Asphyxiated
- 263
- 0
Homework Statement
\lim_{t \to -\infty} \frac {\sqrt{t^{2}+2}}{4t+2}
Homework Equations
The Attempt at a Solution
Later in the problem I will use:
\epsilon^{+} \;\;\;\;\;\;\;and\;\;\;\;\;\;\; \epsilon^{-}
to represent positive and negative infinitesimals, respectively.
So:
\lim_{t \to -\infty} \frac {\sqrt{t^{2}+2}}{4t+2}
\lim_{t \to -\infty} \frac {\sqrt{t^{2}(1+2t^{-2})}}{4t+2}
\lim_{t \to -\infty} \frac {t\sqrt{1+2t^{-2}}}{4t+2}
\lim_{t \to -\infty} \frac {t\sqrt{1+2t^{-2}}}{t(4+2t^{-1})}
\lim_{t \to -\infty} \frac {\sqrt{1+2t^{-2}}}{4+2t^{-1}}
So at this point the limit is basically saying this:
\frac {1 + \epsilon^{+}}{4+ \epsilon^{-}}
this is because the reciprocal of negative infinity squared is a positive infinitesimal and the reciprocal of negative infinity is a negative infinitesimal so the limit is:
\lim_{t \to -\infty} \frac {\sqrt{t^{2}+2}}{4t+2} = \frac {1}{4}
My book states it should be -1/4 but I do not see why. Your adding a positive infinitesimal to 1 and subtracting it from 4, but that doesn't make the numerator or denominator negative, so what I am I missing?