Solve Integral: \frac{(1-x)}{x^2}e^{x-1} dx

  • Thread starter Thread starter jeanf
  • Start date Start date
  • Tags Tags
    Integral
jeanf
Messages
8
Reaction score
0
can someone show me how to do this integral:

\int \frac{(1-x)}{x^2} e^{x-1} dx
 
Physics news on Phys.org
Integration by parts works this way, but perhaps there's an easier way.

\begin{array}{l}<br /> \int {\frac{{\left( {1 - x} \right)}}{{x^2 }}e^{x - 1} } dx = - \int {\left( {1 - x} \right)e^{x - 1} } d\left( {\frac{1}{x}} \right) = - \left( {\frac{{\left( {1 - x} \right)e^{x - 1} }}{x} - \int {\frac{1}{x}d\left( {\left( {1 - x} \right)e^{x - 1} } \right)} } \right) \\ \\<br /> = - \frac{{\left( {1 - x} \right)e^{x - 1} }}{x} - \int {\frac{{ - xe^{x - 1} }}{x}dx} = - \frac{{\left( {1 - x} \right)e^{x - 1} }}{x} + e^{x - 1} + C = \frac{{e^{x - 1} }}{x} + C \\ <br /> \end{array}
 
here's a simpler more "trivial" solution, by the way what's the derivative of e^x/x? hint, hint
I= \int \frac{(1-x)}{x^2} e^{x-1} dx
=e^{-1} \int \frac{e^{x}dx}{x^{2}} -e^{-1} \int \frac{e^{x}dx}{x}
J=\int \frac{e^{x}dx}{x^{2}} ,~K=\int \frac{e^{x}dx}{x}
using integration by parts
K= \frac{e^{x}}{x}+ \int \frac{e^{x}dx}{x^{2}}
I=e^{-1}J- \frac{e^{-1}e^{x}}{x} -e^{-1}J,~I= \frac{-e^{-1}e^{x}}{x}+C
 
Back
Top