here's a simpler more "trivial" solution, by the way what's the derivative of e^x/x? hint, hint
I= \int \frac{(1-x)}{x^2} e^{x-1} dx
=e^{-1} \int \frac{e^{x}dx}{x^{2}} -e^{-1} \int \frac{e^{x}dx}{x}
J=\int \frac{e^{x}dx}{x^{2}} ,~K=\int \frac{e^{x}dx}{x}
using integration by parts
K= \frac{e^{x}}{x}+ \int \frac{e^{x}dx}{x^{2}}
I=e^{-1}J- \frac{e^{-1}e^{x}}{x} -e^{-1}J,~I= \frac{-e^{-1}e^{x}}{x}+C
I'm reviewing Meirovitch's "Methods of Analytical Dynamics," and I don't understand the commutation of the derivative from r to dr:
$$
\mathbf{F} \cdot d\mathbf{r} = m \ddot{\mathbf{r}} \cdot d\mathbf{r} = m\mathbf{\dot{r}} \cdot d\mathbf{\dot{r}}
$$