- #1
- 3
- 0
Homework Statement
a) Solve:[tex]^{Pi}_{0}[/tex][tex]\int[/tex][tex]\frac{sin(x)}{1 + cos²x}[/tex]dx
b) Proof that for each f, continuous in [0, a], [tex]^{a}_{0}[/tex][tex]\int[/tex][tex]{f(x)}[/tex]dx = [tex]^{a}_{0}[/tex][tex]\int[/tex][tex]{f(a-x)}[/tex]dx
c) Use a and b to solve [tex]^{Pi}_{0}[/tex][tex]\int[/tex][tex]\frac{x sin(x)}{1 + cos²x}[/tex]dx
Homework Equations
/
The Attempt at a Solution
a) t = cos(x)
dt/dx = sin(x)
dt = sin(x)*dx
[tex]^{Pi}_{0}[/tex][tex]\int[/tex][tex]\frac{sin(x)}{1 + cos²x}[/tex]dx
= [tex]^{1}_{-1}[/tex][tex]\int[/tex][tex]\frac{dt}{1 + t²}[/tex]dt
= arctan(1)-arctan(-1) = Pi/2
b) t = a - x
dt/dx = -1
-dt = dx
[tex]^{0}_{a}[/tex][tex]\int[/tex][tex]{-f(t)}[/tex]dt
= [tex]^{a}_{0}[/tex][tex]\int[/tex][tex]{f(t)}[/tex]dt
= [tex]^{a}_{0}[/tex][tex]\int[/tex][tex]{f(x)}[/tex]dx
c) I have no idea to start this should I replace x with Pi-x, I tried this but I'm not getting any further