Solve log5(x-1) + log5(x-2) - log5(x+6) = 0

  • Thread starter Thread starter Acnhduy
  • Start date Start date
AI Thread Summary
The discussion revolves around solving the logarithmic equation log5(x-1) + log5(x-2) - log5(x+6) = 0. The user initially attempts to combine the logarithms but struggles with the algebraic manipulation and the application of logarithmic properties. They realize a mistake regarding the base of the logarithm and confirm that they should use the quadratic formula to solve the resulting equation x^2 - 4x - 4 = 0. The conversation emphasizes the importance of checking solutions to ensure they do not result in invalid logarithmic expressions. The correct approach involves recognizing the need for the quadratic formula or completing the square to find the roots.
Acnhduy
Messages
31
Reaction score
1

Homework Statement



Solve:

log5(x-1) + log5(x-2) - log5(x+6) = 0

Homework Equations


The Attempt at a Solution



I feel like this is really simple but I cannot get the answer.

This is what I attempted

Since they have the same base, I multiplied the top

log5[(x-1)(x-2)] - log5(x+6) = 0

This gives me

log5(x2-3x+2) - log5(x+6) = 0

At this point I did not now what to do, I tried 2 methods,

1.
Since they are the same base again, I divided the top this time

log5(x2-3x+2) / (x+6) = 0

but I don't know how to continue

2.

I moved - log5(x+6) to the other side

log5(x2-3x+2) = log5(x+6)

Since they have the same base I ignored them so

x2-3x+2 = x+6

Which gave me

x2 - 4x - 4

Which cannot be factored.

Please help, thankyou :)
 
Last edited:
Physics news on Phys.org
What you've done is incorrect because the rule of logarithms is

\log{a}+\log{b} = \log{ab}

But

a^m\cdot a^n = a^{m+n}\neq a^{mn}

See if you can apply these algebraic formulae to correctly answer your question.
 
Mentallic said:
\log{a}+\log{b} = \log{ab}

I did use this logarithm law, since the base for all of them are common.

Acnhduy said:
log5(x-1) + log5(x-2) - log5(x+6) = 0

log5[(x-1)(x-2)] - log5(x+6) = 0

This gives me

log5(x2-3x+2) - log5(x+6) = 0
But

Mentallic said:
a^m\cdot a^n = a^{m+n}\neq a^{mn}
I did not use at all throughout. I am not sure where I have gone wrong, can you point it out for me?
 
Last edited:
What is

\log{a^m}+\log{a^n}

equivalent to?
 
Oh, I think I found the problem... 5 is the base, not 10.

So this is the correct equation:

log5(x-1) + log5(x-2) - log5(x+6) = 0

Terribly sorry, would my calculations be correct following the equation above?
 
Acnhduy said:
Oh, I think I found the problem... 5 is the base, not 10.

So this is the correct equation:

log5(x-1) + log5(x-2) - log5(x+6) = 0

Terribly sorry, would my calculations be correct following the equation above?

Oh, in that case, you're on the right track in #2 in your first post. x^2-4x-4=0 cannot be factored in the manner you're thinking of, but it does have irrational roots. Use the quadratic formula to find them.

Also, keep in mind that some (or even all) of your x solutions might not be valid. You need to plug them back into the original equation to see if it makes sense. If you end up with log(-1) for example, then that solution of x needs to be scrapped.
 
  • Like
Likes 1 person
Acnhduy said:

Homework Statement



Solve:

log5(x-1) + log5(x-2) - log5(x+6) = 0

Homework Equations


The Attempt at a Solution


2.

I moved - log5(x+6) to the other side

log5(x2-3x+2) = log5(x+6)

Since they have the same base I ignored them so

x2-3x+2 = x+6

Which gave me

x2 - 4x - 4 = ??

Which cannot be factored.

Please help, thankyou :)

What is x2 - 4x - 4 equal to?

It should be a quadratic equation, can you solve it? The roots need not be integer numbers!

ehild
 
Oh I see, thank you!
 
x2 - 4x - 4 = 0

When you mean that they do not need to be intergers, how do I go about solving? As suggested by Mentallic, I would have to use the quadratic formula right?
 
  • #10
The quadratic formula is the easiest method, but completing the square works too if you don't remember the formula.

x^2-4x-4=0

Now add 4 to both sides.
(x^2-4x+4)-4=4

(x-2)^2-4=4

etc.

This is how the quadratic formula is derived. Begin with

ax^2+bx+c=0

and then complete the square to solve for x.
 
Back
Top