twoflower
- 363
- 0
Hi,
I have
<br /> y'' - y' = \frac{1}{e^{x} + 1}<br />
What I did:
<br /> \lambda^2 - \lambda = 0<br />
<br /> \lambda_1 = 0<br />
<br /> \lambda_2 = 1<br />FSS = [1, e^x]
<br /> y = a + be^x<br />
<br /> y' = a' + b'e^x + be^x<br />
Putting first two terms zero, I get
<br /> y'' = b'e^x + be^x<br />
<br /> y'' - y' = b'e^x + be^x - be^x = b'e^x = \frac{1}{e^x + 1}<br />
<br /> b' = \frac{1}{e^{2x} + e^x}<br />
From the second condition
<br /> a' + b'e^x = 0<br />
I get
<br /> a' = -\frac{e^x}{e^{2x} + e^x} = 1 - \frac{e^x}{1+e^x}<br />
Anyway,
<br /> a' + b'e^x = 0<br />
now isn't true. Where do I do the mistake?
Thank you very much.
I have
<br /> y'' - y' = \frac{1}{e^{x} + 1}<br />
What I did:
<br /> \lambda^2 - \lambda = 0<br />
<br /> \lambda_1 = 0<br />
<br /> \lambda_2 = 1<br />FSS = [1, e^x]
<br /> y = a + be^x<br />
<br /> y' = a' + b'e^x + be^x<br />
Putting first two terms zero, I get
<br /> y'' = b'e^x + be^x<br />
<br /> y'' - y' = b'e^x + be^x - be^x = b'e^x = \frac{1}{e^x + 1}<br />
<br /> b' = \frac{1}{e^{2x} + e^x}<br />
From the second condition
<br /> a' + b'e^x = 0<br />
I get
<br /> a' = -\frac{e^x}{e^{2x} + e^x} = 1 - \frac{e^x}{1+e^x}<br />
Anyway,
<br /> a' + b'e^x = 0<br />
now isn't true. Where do I do the mistake?
Thank you very much.