Solve Physics Problem: Gaussian Distribution

houseguest
Messages
16
Reaction score
0
Hello, I am attaching what was an extra credit question in my physics class which I didn't understand at all. The topic isn't in the book and all the internet searchs I read confuse me. I was hoping someone might give me a walk through.
Thanks!
 

Attachments

  • Screenshot.png
    Screenshot.png
    33.8 KB · Views: 681
Last edited:
Physics news on Phys.org
The problem states the integral value that is "under the bell curve" between x = - 1 and x = 1, for a Gaussian distribution with xm = 0 and σx = 1, which is the numerator of the probability expression (the denominator is \sqrt{2\pi\sigma^2}). You should verify this by comparing the two formulas (the one on the left and the one at the top).

Since the integral is defined between -1 to 1, it is defined from xm - σx to xm + σx where xm = 0 and σx = 1.

Let C(\sigma)=\sqrt{2\pi\sigma^2}, then the answer is 1.7/C(1), for the standard Gaussian. Since C(1)=\sqrt{2\pi} = 2.5, the probability is 1.7/2.5 = 0.68.

But I can convert the standard Gaussian random variable x (with xm = 0 and σx = 1) to any other Gaussian random variable (with an arbitrary xm \ne 0 and an arbitrary σx > 0) by multiplying the standard one with σx > 0 then adding xm \ne 0. For example, X = σx Y + xm where Y is the standard Gaussian and X is any Gaussian, with mean xm \ne 0 and standard deviation σx > 0.

Let f(x;xmx) be the Gaussian density with an arbitrary xm and an arbitrary σx > 0. f(x;xmx) is identical to the formula on the left margin. The special case of standard Gaussian, f(y;0,1) is identical to the formula at the top of the page.

The conversion X = σx Y + xm does not affect the probability value as long as the bounds of integration (and the C value) are adjusted accordingly. Thus,

\int_{x_m-\sigma_x}^{x_m+\sigma_x}f(x;x_m,\sigma_x)dx\left/C(\sigma_x) = \int_{-1}^{1}f(y;0,1)dy\right/C(1) = 1.7/C(1) = 0.68.

So the answer is 0.68 not only for the standard Gaussian but for any Gaussian distribution.
 
Last edited:
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top