MHB Solve R Root with Newton's Method: n ≥2, R>0

  • Thread starter Thread starter house2012
  • Start date Start date
  • Tags Tags
    Method Newtons
house2012
Messages
2
Reaction score
0
Hey guys, need some help with this question. I am stuck and don't know what to do.

Q: Show that using Newton's method to $$1-\frac{R}{x^n}$$ and to $$x^n-R$$ for determining $$(R)^{\frac{1}{n}}$$ results in 2 similar, but different iterative formulas, with $$n \ge 2$$ and $$R >0$$

Thanks for your help guys!
 
Mathematics news on Phys.org
First the wording of this question makes it very difficult to understand what is required. I will assume that you are asked to use Newton's method with:

\[f(x)=1-\frac{R}{x^n}\]

to find \(R^{1/n}\).

First applying Newton's method to \(f(x)\) if it works finds a solution to \(f(x)=0\).

Putting \(f(x)=1-\frac{R}{x^n}=0\) rearranges to \(\frac{R}{x^n}=1\) or \(x^n=R\) so \(f(x)\) is of the correct form for finding \(R^{1/n}\).

Now Newton's iteration to find a root of \(f(x)=0\) is:

\[x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)}\]
which in this case reduces to:

\[x_{k+1}=x_k-\frac{(x_k^n-R)x_k}{Rn}\]

Now the question as asked does not indicate where to go from here.

CB
 
Last edited:
the itirating
\[ x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \]

for first one

\[ x_1 = x_0 - \frac{((x_0)^n - R)}{n(x_0 ^{n-1})} \]

second one

\[ x_1 = x_0 - \frac{1 - \frac{R}{x_0 ^{n}} }{ \frac{-nR}{x_0 ^{n+1}}}= x_0 - \frac{x_0(x_0 ^n-R)}{-nR} \]

these are different
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top