MHB Solve System of Equations: X^2+y^2 and (x+3)^2+(y-3)^2=9

ironluis
Messages
2
Reaction score
0
I need your help for solved this. :confused:

X^2+y^2=9
(x+3)^2+(y-3)^2=9

Please help me.
 
Mathematics news on Phys.org
Re: I need help!

Hi ironluis,

Welcome to MHB! (Wave)

Is this a question about systems of equations? Are you supposed to look at the two equations and solve for $x$ and $y$? This can be done algebraically however you posted the question in our geometry forum. Are you supposed to solve it geometrically?
 
Im sorry :confused:
 
Notice both equations are equal to 9, so they are equal to each other. Set them equal to each other, expand, simplify...
 
A more geometric approach would be to consider the point midway between the center of the circles. We use the mid-point in this case because the radii of the circles is the same. If the distance of this midpoint to the radii is greater than the radii, then there is no solution. If this distance is equal to the radii, there is one solution, and if it is less than the radii, and greater than zero, then there are two solutions. If the distance is zero, then the circles are concurrent and there are an infinite number of solutions.

Next, compute the slope of the line segment connecting the center of the circles, and observe that the solutions will lie along the line perpendicular to this segment, and passing through the mid-point of the centers.

This line will give you the result suggested by Prove It's much more straightforward algebraic approach.

Then you want to find the points on this line which satisfy either of the equations describing the circles.
 
Hi,
I think the best geometric solution to the problem of intersection of two circles is given at Circle, Cylinder, Sphere
I have used this algorithm with good success.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
3
Views
2K
Replies
8
Views
1K
Replies
24
Views
2K
Replies
3
Views
1K
Replies
1
Views
1K
Replies
6
Views
1K
Back
Top