Solve the separable differential equation

hardatwork
Messages
9
Reaction score
0

Homework Statement



dx/dy=-0.6y
y(0)=5

Homework Equations





The Attempt at a Solution


I tried solving it by
\intdy/y=\int-0.6dx
ln(y)=-0.6x+c
ln(y(0))=-0.6(0)+c
ln(5)=c
ln(y)=-0.6x+ln(5)
y=e^{-0.6x}+5
But its incorrect. I don't know what I am doing wrong. Can someone helping see what I am doing wrong? Thank You so much!
 
Physics news on Phys.org
You should solve for your function before substituting initial conditions. Remember that e^{ln|y|}=y
 
hardatwork said:

Homework Statement



dx/dy=-0.6y

Is this a typo? Do really mean dx/dy=-0.6y, or do you mean dy/dx=-0.6y?

\intdy/y=\int-0.6dx
ln(y)=-0.6x+c
ln(y(0))=-0.6(0)+c
ln(5)=c
ln(y)=-0.6x+ln(5)
y=e^{-0.6x}+5
But its incorrect. I don't know what I am doing wrong. Can someone helping see what I am doing wrong? Thank You so much!

If \ln y=-0.6x+\ln 5, then

y=e^{-0.6x+\ln 5}=e^{\ln 5}e^{-0.6x}=5e^{-0.6x}\neq e^{-0.6x}+5
 
Okay. That makes so much sense. Thank You so much
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top