MHB Solve the trigonometric equation?

arroww
Messages
16
Reaction score
0
a) Solve the trigonometric equation: A = cosX + AsinX, for some angle X.

b) The imaginary number i is equal to √-1. Use part a) to solve i = cosX + isinX.

You will have used degrees to answer parts a) and b). However, the mathematics below requires the use of radians. Convert degrees to radians by multiplying the degree measurement by π/180.

You will now find a value of i^i.

This will require the euler identity e^iX = cosX + isinX, part b) and exponent arithmetic.

c) Evaluate, for one value, i^i.

----

So I honestly have no idea how to start this off haha. Could someone help out? Obviously you don't need to solve the whole thing - i just need to know how to start it off.Thanks! (:
 
Last edited:
Mathematics news on Phys.org
$a \sin(x)+b \cos(x)=c \sin(x+\varphi),$ where $c^{2}=a^{2}+b^{2}$ and $\varphi=\text{atan}2(b,a)$. That last is not a typo - it's the atan2 function, available in many programming languages. It essentially resolves the ambiguity inherent in the arctangent function.
 
arroww said:
a) Solve the trigonometric equation: A = cosX + AsinX, for some angle X.

b) The imaginary number i is equal to √-1. Use part a) to solve i = cosX + isinX.

You will have used degrees to answer parts a) and b). However, the mathematics below requires the use of radians. Convert degrees to radians by multiplying the degree measurement by π/180.

You will now find a value of i^i.

This will require the euler identity e^iX = cosX + isinX, part b) and exponent arithmetic.

c) Evaluate, for one value, i^i.

----

So I honestly have no idea how to start this off haha. Could someone help out? Obviously you don't need to solve the whole thing - i just need to know how to start it off.Thanks! (:

I would proceed like this:

$\displaystyle \begin{align*} A &= \cos{(x)} + A\sin{(x)} \\ A - A\sin{(x)} &= \cos{(x)} \\ A \left[ 1 - \sin{(x)} \right] &= \cos{(x)} \\ \left\{ A \left[ 1 - \sin{(x)} \right] \right\} ^2 &= \cos^2{(x)} \\ A^2 \left[ 1 - 2\sin{(x)} + \sin^2{(x)} \right] &= 1 - \sin^2{(x)} \\ A - 2A\sin{(x)} + \sin^2{(x)} &= 1 - \sin^2{(x)} \\ 2\sin^2{(x)} - 2A\sin{(x)} &= 1 - A \\ \sin^2{(x)} - A\sin{(x)} &= \frac{1 - A}{2} \\ \sin^2{(x)} - A\sin{(x)} + \left( -\frac{A}{2} \right) ^2 &= \frac{1 - A}{2} + \left( -\frac{A}{2} \right) ^2 \\ \left[ \sin{(x)} - \frac{A}{2} \right] ^2 &= \frac{A^2 - 2A + 2}{4} \\ \sin{(x)} - \frac{A}{2} &= \pm \frac{\sqrt{ A^2 - 2A + 2}}{2} \\ \sin{(x)} &= \frac{A \pm \sqrt{A^2 - 2A + 2}}{2} \\ x &= \arcsin{ \left( \frac{A \pm \sqrt{A^2 - 2A + 2}}{2} \right) } \end{align*}$

as well as all other quadrant solutions and all other possibilities when the period of $\displaystyle \begin{align*} 2\pi \end{align*}$ is added or subtracted.

Just remember that not all solutions might be valid, as squaring to solve an equation might bring in extraneous solutions. You need to check which are possible.
 
For a), my solution starts like Prove It's, but then diverges from it.
$$A = \cos x + A\sin x,$$ $$A(1-\sin x) = \cos x,$$ $$A^2(1-\sin x)^2 = \cos^2x = 1 - \sin^2x = (1-\sin x)(1+\sin x),$$ $$A^2(1-\sin x) = 1+\sin x,\quad(*)$$ $$(A^2+1)\sin x = A^2-1,$$ $$\sin x = \frac{A^2-1}{A^2+1},$$ $$x = \arcsin\Bigl(\frac{A^2-1}{A^2+1}\Bigr)\quad(**).$$

For b), the obvious thing to do is to put $A=i$ in a). But then we hit a serious roadblock, because if $A=i$ then $A^2 = -1$ and $A^2+1=0.$ So the denominator of the fraction in (**) is zero. What has gone wrong here?? To see what to do about this, notice that to get (*) from the previous line, I canceled a factor $(1-\sin x)$ from both sides of the equation. When might that step not be justified?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top