Solving 3 Equations for w in Matrix Form

  • Thread starter Thread starter andybham
  • Start date Start date
  • Tags Tags
    Form Matrix
AI Thread Summary
The discussion focuses on transforming three equations involving variables a, b, c, and constants d and e into a matrix form. The equations can be expressed as w*u = T*u, where u is the vector {a, b, c} and T is a specified matrix. Participants explore the possibility of incorporating d and e into the matrix equation without treating them as typos. A proposed matrix T is presented, and the unknowns in the equations are clarified. Ultimately, the equations can be reformulated into a matrix equation that includes the constants d and e.
andybham
Messages
14
Reaction score
0
Is it possible to put these three equations into a matrix equation

w*a = b -2a + e
w*b = c -2b + a
w*c = d -2c + b

of the style w*u = T*u where u is a vector, u = {a, b, c} and T is a matrix. w is just a number.
 
Mathematics news on Phys.org
What are d and e? If they are really different and not typos, then you will need T*u+v=w*u, where v is the vector (e,0,d) and ------------------------------------------------
------------------------------------------------------------------
T=
-2 1 0
1 -2 1
0 1 -2
--------------------------------------------------------------------------------
 
Last edited:
no they are not typos, could I not use

T = -2 1 e/c
1 -2 1
d/a 1 -2

or is that just stupid?
 
andybham said:
Is it possible to put these three equations into a matrix equation

w*a = b -2a + e
w*b = c -2b + a
w*c = d -2c + b

of the style w*u = T*u where u is a vector, u = {a, b, c} and T is a matrix. w is just a number.

What exactly are the unknowns in your equations? a, b, c? If so, then

(2 + w)a - b = e
-a + (2 + w)b - c = 0
-b + (2 + w)c = d ,

which can be written as
\left(\begin{array}{ccc}2+w & -1 & 0\\-1 & 2+w & -1\\0 & -1 & 2+w\end{array}\right) \left(\begin{array}{ccc}a \\b\\c\end{array}\right)=\left(\begin{array}{ccc}e \\0\\d\end{array}\right).
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
3
Views
1K
Replies
1
Views
1K
Replies
10
Views
3K
Replies
11
Views
3K
Replies
10
Views
1K
Replies
7
Views
3K
Back
Top